DOI QR코드

DOI QR Code

Draft Genome Sequences of Three Airborne Aspergilli Series Versicolores

  • Gery, Antoine (Normandie Univ, Unicaen & Unirouen, ToxEMAC-ABTE, Centre F. Baclesse) ;
  • Seguin, Virginie (Normandie Univ, Unicaen & Unirouen, ToxEMAC-ABTE, Centre F. Baclesse) ;
  • Bonhomme, Julie (Microbiology Department, Caen University Hospital) ;
  • Garon, David (Normandie Univ, Unicaen & Unirouen, ToxEMAC-ABTE, Centre F. Baclesse)
  • 투고 : 2021.10.12
  • 심사 : 2022.01.09
  • 발행 : 2022.02.28

초록

The Aspergilli of the section Nidulantes series Versicolores are among the most recurrent molds in indoor environments. These species cause damage to the quality of air. Indeed, they are responsible for allergies, aggravation of asthma and can even cause infections in immunocompromised patients. Molds belonging to the Versicolores series also produce sterigmatocystin, a mycotoxin classified as potential human carcinogen by the International Agency for Research on Cancer (group 2B). Here, we provide for the first time the genome of three species of the series Versicolores: Aspergillus creber, Aspergillus jensenii and Aspergillus protuberus which are the most abundant species of this series in bioaerosols. The genomes of these three species could be assembled with a percentage of completeness of 97.02%, 96.21% and 95.35% for Aspergillus creber, A. jensenii and A. protuberus respectively. These data will allow to study the genes and gene clusters responsible for the expression of virulence factors, the biosynthesis of mycotoxins and the proliferation of these ubiquitous and recurrent molds.

키워드

과제정보

ABTE-ToxEMAC is a member of the FHU (University Hospital Federation) RESPIRE: "Pathogenes, ENvironnement et Hote: une approche integrative en sante respiratoire".

참고문헌

  1. Jurjevic Z, Peterson SW, Horn BW. Aspergillus section versicolores: nine new species and multilocus DNA sequence based phylogeny. IMA Fungus. 2012;3(1):59-79. https://doi.org/10.5598/imafungus.2012.03.01.07
  2. Houbraken J, Kocsube S, Visagie CM, et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud Mycol. 2020;95:5-169. https://doi.org/10.1016/j.simyco.2020.05.002
  3. Jaksic D, Sertic M, Kifer D, et al. Fungi and their secondary metabolites in water-damaged indoors after a major flood event in eastern Croatia. Indoor Air. 2021;31(3):730-744. https://doi.org/10.1111/ina.12777
  4. Jaksic Despot D, Segvic Klaric M. A year-round investigation of indoor airborne fungi in Croatia. Arh Hig Rada Toksikol. 2014;65(2):209-218. https://doi.org/10.2478/10004-1254-65-2014-2483
  5. Gery A, Rioult J-P, Heutte N, et al. First characterization and description of Aspergillus series versicolores in French bioaerosols. JoF. 2021;7(8):676. https://doi.org/10.3390/jof7080676
  6. Kobayashi N, Kubosaki A, Takahashi Y, et al. Distribution of sterigmatocystin-producing Aspergilli in Japan. Food Saf (Tokyo). 2018;6(2):67-73. https://doi.org/10.14252/foodsafetyfscj.2018001
  7. Tsang C-C, Hui TWS, Lee K-C, et al. Genetic diversity of Aspergillus species isolated from onychomycosis and Aspergillus hongkongensis sp. nov., with implications to antifungal susceptibility testing. Diagn Microbiol Infect Dis. 2016;84(2):125-134. https://doi.org/10.1016/j.diagmicrobio.2015.10.027
  8. Siqueira JPZ, Sutton DA, Garcia D, et al. Species diversity of Aspergillus section Versicolores in clinical samples and antifungal susceptibility. Fungal Biol. 2016;120(11):1458-1467. https://doi.org/10.1016/j.funbio.2016.02.006
  9. Borsa BA, Ozgun G, Houbraken J, et al. The first case of persistent vaginitis due to Aspergillus protuberus in an immunocompetent patient. Mikrobiyol Bul. 2015;49(1):130-134. https://doi.org/10.5578/mb.8397
  10. Vidal-Acuna~ MR, Ruiz M, Torres MJ, et al. Prevalence and in vitro antifungal susceptibility of cryptic species of the genus Aspergillus isolated in clinical samples. Enferm Infecc Microbiol Clin (Engl Ed). 2019;37(5):296-300. https://doi.org/10.1016/j.eimc.2018.07.010
  11. Jia J, Chen M, Mo X, et al. The first case report of kerion-type scalp mycosis caused by Aspergillus protuberus. BMC Infect Dis. 2019;19(1):506. https://doi.org/10.1186/s12879-019-4144-7
  12. Al-Hatmi AMS, Castro MA, de Hoog GS, et al. Epidemiology of Aspergillus species causing keratitis in Mexico. Mycoses. 2019;62(2):144-151. https://doi.org/10.1111/myc.12855
  13. Rick E, Woolnough K, Pashley C, et al. Allergic fungal airway disease. J Investig Allergol Clin Immunol. 2016;26(6):344-354. https://doi.org/10.18176/jiaci.0122
  14. Tiotiu AI, Novakova P, Nedeva D, et al. Impact of air pollution on asthma outcomes. IJERPH. 2020;17(17):6212. https://doi.org/10.3390/ijerph17176212
  15. Spellberg B, Edwards J, Ibrahim A. Novel perspectives on mucormycosis: pathophysiology, presentation, and management. Clin Microbiol Rev. 2005;18(3):556-569. https://doi.org/10.1128/CMR.18.3.556-569.2005
  16. Gletsou E, Ioannou M, Liakopoulos V, et al. Aspergillosis in immunocompromised patients with haematological malignancies. J BUON off J Balk Union Oncol. 2018;23:7-10.
  17. IARC monographs on the identification of carcinogenic hazards to humans. Available online: https://monographs.iarc.who.int/. (accessed on 10 September 2021).
  18. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  19. Bankevich A, Nurk S, Antipov D, et al. SPADES: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455-477. https://doi.org/10.1089/cmb.2012.0021
  20. Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol Biol Clifton NJ. 2019;1962:227-245. https://doi.org/10.1007/978-1-4939-9173-0_14
  21. Nachtweide S, Stanke M. Multi-genome annotation with AUGUSTUS. Methods Mol Biol Clifton NJ. 2019;1962:139-160. https://doi.org/10.1007/978-1-4939-9173-0_8
  22. Wick RR, Schultz MB, Zobel J, et al. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31(20):3350-3352. https://doi.org/10.1093/bioinformatics/btv383
  23. Mikheenko A, Prjibelski A, Saveliev V, et al. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics. 2018;34(13):i142-50. https://doi.org/10.1093/bioinformatics/bty266