DOI QR코드

DOI QR Code

Two New Species and Three New Records of Ascomycetes in Korea

  • Nguyen, Thuong T.T. (Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Lim, Hyo Jin (Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Chu, So Jeong (Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Lee, Hyang Burm (Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University)
  • Received : 2021.10.04
  • Accepted : 2022.02.02
  • Published : 2022.02.28

Abstract

During a survey of plant-inhabiting fungi and water niches from Korea, noteworthy fungi were collected; among them, two new species, Paracamarosporium noviaquum sp. nov. and Phyllosticta gwangjuensis sp. nov., are described based on morphology and multi-gene phylogenies. Paracamarosporium noviaquum was characterized by its production of 1-celled and 2-celled conidia, forming conidiomata on only potato dextrose agar medium. Phyllosticta gwangjuensis was characterized by conidia hyaline, ovoid to ellipsoid shape, rounded at both ends, containing numerous guttulae or with a single large central guttule. Additional species were identified as Cosmospora lavitskiae, Monochaetia cameliae, and Roussoella doimaesalongensis, which are reported as new record species from Korea. Detailed descriptions and illustrations of these taxa are provided herein.

Keywords

Acknowledgement

This work was partly supported by the Project on Survey and Discovery of Indigenous Fungal Species of Korea, funded by the NIBR (NIBR202102201), and the Project on Discovery of Fungi from Freshwater and Collection of Fungarium, funded by the NNIBR (NNIBR202101203) of the Ministry of Environment (MOE), and in part carried out with the support of Cooperative Research Program for Agriculture Science and Technology Development, Rural Development Administration, Republic of Korea.

References

  1. Naranjo-Ortiz MA, Gabaldon T. Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol Rev Camb Philos Soc. 2019;94(6):2101-2137. https://doi.org/10.1111/brv.12550
  2. Wijayawardene NN, Hyde KD, Al-Ani LKT, et al. Outline of fungi and fungus-like taxa. Mycosphere. 2020;11(1):1060-1456. https://doi.org/10.5943/mycosphere/11/1/8
  3. Kirk PM, Cannon PF, Minter DW, et al. Ainsworth and Bisby's dictionary of the Fungi. 10th ed. Wallingford: CAB International; 2008.
  4. Hongsanan S, Hyde KD, Phookamsak R, et al. Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere. 2020;11(1):1553-2107. https://doi.org/10.5943/mycosphere/11/1/13
  5. McKenzie E, Jones EBG, Hyde KD. Taxonomy and phylogeny of Dothideomycetes. Phytotaxa. 2014;176(1):5-6. https://doi.org/10.11646/phytotaxa.176.1.3
  6. Jones EBG, Devadatha B, Abdel-Wahab MA, et al. Phylogeny of new marine Dothideomycetes and Sordariomycetes from mangroves and deep-sea sediments. Botanica Marina. 2020;63(2):155-181. https://doi.org/10.1515/bot-2019-0014
  7. Turgeon BG, Baker SE. Genetic and genomic dissection of the Cochliobolus heterostrophus Tox1 locus controlling biosynthesis of the polyketide virulence factor T-toxin. Adv Genet. 2007;57:219-261. https://doi.org/10.1016/S0065-2660(06)57006-3
  8. Stukenbrock EH, Quaedvlieg W, Javan-Nikhah M, et al. Zymoseptoria ardabiliae and Z. pseudotritici, two progenitor species of the septoria tritici leaf blotch fungus Z. tritici (synonym: Mycosphaerella graminicola). Mycologia. 2012;104(6):1397-1407. https://doi.org/10.3852/11-374
  9. Haridas S, Albert R, Binder M, et al. 101 Dothideomycetes genomes: a test case for predicting lifestyles and emergence of pathogens. Stud Mycol. 2020;96:141-153. https://doi.org/10.1016/j.simyco.2020.01.003
  10. Ohm RA, Feau N, Henrissat N, et al. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog. 2012;8(12):e1003037. https://doi.org/10.1371/journal.ppat.1003037
  11. Hyde KD, Nilsson RH, Alias SA, et al. One stop shop: backbones trees for important phytopathogenic genera: I. Fungal Divers. 2014;67(1):121-125.
  12. Hyde KD, Norphanphoun C, Maharachchikumbura SSN, et al. Refined families of Sordariomycetes. Mycosphere. 2020;11(1):305-1059. https://doi.org/10.5943/mycosphere/11/1/7
  13. Zhang N, Castlebury LA, Miller AN, et al. An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia. 2006;98(6):1076-1087. https://doi.org/10.3852/mycologia.98.6.1076
  14. Maharachchikumbura SSN, Hyde KD, Jones EBG, et al. Families of Sordariomycetes. Fungal Divers. 2016;79(1):1-317. https://doi.org/10.1007/s13225-016-0369-6
  15. Luo Z-L, Hyde KD, Liu JKJ, et al. Freshwater Sordariomycetes. Fungal Divers. 2019;99(1):451-660. https://doi.org/10.1007/s13225-019-00438-1
  16. Blaszczyk L, Siwulski M, Sobieralski K, et al. Trichoderma spp. - application and prospects for use in organic farming and industry. J Plant Prot Res. 2014;54(4):309-317. https://doi.org/10.2478/jppr-2014-0047
  17. Hyde KD, Xu J, Rapior S, et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019;97(1):1-136. https://doi.org/10.1007/s13225-019-00430-9
  18. Dannon HF, Dannon AE, Douro-Kpindou OK, et al. Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management. J Cotton Res. 2020;3(1):24. https://doi.org/10.1186/s42397-020-00061-5
  19. Gangadevi V, Muthumary J. Taxol, an anticancer drug produced by an endophytic fungus B. robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol. 2008;24(5):717-724. https://doi.org/10.1007/s11274-007-9530-4
  20. Hawksworth DL. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res. 1991;95(6):641-655. https://doi.org/10.1016/s0953-7562(09)80810-1
  21. Hawksworth DL, Lucking R. Fungal diversity revisited 2.2 to 3.8 million species. Microbiol Spectr. 2017;5(4):FUNK-0052-2016.
  22. Shearer CA, Descals E, Kohlmeyer B, et al. Fungal biodiversity in aquatic habitats. Biodivers Conserv. 2007;16(1):49-67. https://doi.org/10.1007/s10531-006-9120-z
  23. Jones EBG, Hyde KD, Pang KL. Freshwater fungi and fungal-Like organisms. Boston (MA): De Gruyter; 2014.
  24. El-Elimat T, Raja HA, Figueroa M, et al. Freshwater fungi as a source of chemical diversity: a review. J Nat Prod. 2021;84(3):898-916. https://doi.org/10.1021/acs.jnatprod.0c01340
  25. Deshmukh SK, Prakash V, Ranjan N. Marine fungi: a source of potential anticancer compounds. Front Microbiol. 2017;8:2536-2560. https://doi.org/10.3389/fmicb.2017.02536
  26. Schulz B, Boyle C, Draeger S, et al. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res. 2002;106(9):996-1004. https://doi.org/10.1017/S0953756202006342
  27. Manganyi MC, Ateba CN. Untapped potentials of endophytic fungi: a review of novel bioactive compounds with biological applications. Microorganisms. 2020;8(12):1934. https://doi.org/10.3390/microorganisms8121934
  28. Nguyen TTT, Lee SH, Jeon SJ, et al. First records of rare Ascomycete fungi, Acrostalagmus luteoalbus, Bartalinia robillardoides, and Collariella carteri from freshwater samples in Korea. Mycobiology. 2019;47(1):1-17. https://doi.org/10.1080/12298093.2018.1550894
  29. Eo J-K, Park H, Eom A-H. Diversity of endophytic fungi isolated from Pinus densiflora and Juniperus rigida distributed in Mt. Baekryeonsan and Mt. Johangsan, Korea. K J Mycol. 2018;46:437-446.
  30. Goh J, Mun HJ, Jeon Y-J, et al. First report of six Sordariomycetes fungi isolated from plant litter in freshwater ecosystems of. Korea. K J Mycol. 2020;48:103-116.
  31. Lim HJ, Nguyen TTT, Lee HB. Six newly recorded fungal taxa from freshwater niche in Korea. Mycobiology. 2021;49(2):105-121. https://doi.org/10.1080/12298093.2020.1862472
  32. Nguyen TTT, Frisvad JC, Kirk PM, et al. Discovery and extrolite production of three new species of Talaromyces belonging to sections Helici and Purpurei from freshwater in Korea. JoF. 2021;7(9):722. https://doi.org/10.3390/jof7090722
  33. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. editors. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press; 1990. p. 315-322.
  34. Bunyard BA, Nicholson MS, Royse DJ. A systematic assessment of Morchella using RFLP analysis of the 28S ribosomal RNA gene. Mycologia. 1994;86(6):762-772. https://doi.org/10.2307/3760589
  35. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172(8):4238-4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
  36. Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol. 1999;16(12):1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
  37. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91(3):553-556. https://doi.org/10.2307/3761358
  38. Nguyen TTT, Voigt K, Santiago ALC, et al. Discovery of novel Backusella (Backusellaceae, Mucorales) isolated from invertebrates and toads in Cheongyang, Korea. JoF. 2021;7(7):513. https://doi.org/10.3390/jof7070513
  39. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972-1973. https://doi.org/10.1093/bioinformatics/btp348
  40. Ronquist F, Teslenko M, van der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539-542. https://doi.org/10.1093/sysbio/sys029
  41. Rambaut A. FigTree, Version 1.3. 1. Computer Program Distributed by the Author. 2009.
  42. Verkley GJM, da Silva M, Wicklow DT, et al. Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Stud Mycol. 2004;50:323-335.
  43. Hernandez-Restrepo M, Schumacher RK, Wingfield MJ, et al. Fungal systematics and evolution: FUSE 2. Sydowia. 2016;68:193-230.
  44. Zhdanova NN. Rare and new species of Dematiaceae isolated from maize rhizosphere of various climatic belts of the Ukrainian SSR. Mykrobiologichnyi Zhurnal Kiev. 1966;28(1):36-40.
  45. Grafenhan T, Schroers H-J, Nirenberg HI, et al. An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Stud Mycol. 2011;68:79-113. https://doi.org/10.3114/sim.2011.68.04
  46. Zeng Z-Q, Zhuang W-Y. A new species of Cosmospora and the first record of sexual state of C. lavitskiae. Mycol Prog. 2016;15:59. https://doi.org/10.1007/s11557-016-1201-0
  47. Miles LE. New species of fungi from Mississippi. Mycologia. 1926;18(4):163-168. https://doi.org/10.2307/3753925
  48. Liu F, Bonthond G, Groenewald JZ, et al. Sporocadaceae, a family of coelomycetous fungi with appendage-bearing conidia. Stud Mycol. 2019;92:287-415. https://doi.org/10.1016/j.simyco.2018.11.001
  49. Thambugala KM, Wanasinghe DN, Phillips AJL, et al. Mycosphere notes 1-50: Grass (Poaceae) inhabiting Dothideomycetes. Mycosphere. 2017;8(4):697-796. https://doi.org/10.5943/mycosphere/8/4/13
  50. Wijayawardene NN, Hyde KD, Bhat DJ, et al. Camarosporium-like species are polyphyletic in Pleosporales; introducing Paracamarosporium and Pseudocamarosporium gen. nov. in Montagnulaceae. Cryptogam Mycol. 2014;35(2):177-198. https://doi.org/10.7872/crym.v35.iss2.2014.177
  51. Crous PW, Schumacher RK, Wingfield MJ, et al. Fungal systematics and evolution: FUSE 1. Sydowia. 2015;67:81-118.
  52. Wijayawardene NN, Hyde KD, Wanasinghe DN, et al. Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Divers. 2016;77(1):1-316. https://doi.org/10.1007/s13225-016-0360-2
  53. Thambugala KM, Daranagama DA, Phillips AJL, et al. Microfungi on Tamarix. Fungal Divers. 2017;82(1):239-306. https://doi.org/10.1007/s13225-016-0371-z
  54. Crous PW, Groenewald JZ. The genera of fungi - G 4: Camarosporium and Dothiora. IMA Fungus. 2017;8(1):131-152. https://doi.org/10.5598/imafungus.2017.08.01.10
  55. Pelo SP, Adebo OA, Green E. Chemotaxonomic profiling of fungal endophytes of Solanum mauritianum (alien weed) using gas chromatography high resolution time-of-flight mass spectrometry (GC-HRTOF-MS). Metabolomics. 2021;17(5):43. https://doi.org/10.1007/s11306-021-01790-7
  56. Persoon CH. Traite sur les champignons comestibles, contenant l'indication des espe ces nuisibles; a l'histoire des champignons. Paris: Belin-Leprieur; 1818.
  57. van der Aa HA. Studies in Phyllosticta I. Stud Mycol. 1973;5:1-110.
  58. Glienke-Blanco C, Aguilar-Vildoso CI, Vieira MLC, et al. Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants. Genet Mol Biol. 2002;25(2):251-255. https://doi.org/10.1590/S1415-47572002000200021
  59. Wikee S, Udayanga D, Crous PW, et al. Phyllosticta: an overview of current status of species recognition. Fungal Divers. 2011;51(1):43-61. https://doi.org/10.1007/s13225-011-0146-5
  60. Wikee S, Lombard L, Nakashima C, et al. A phylogenetic re-evaluation of Phyllosticta (Botryosphaeriales). Stud Mycol. 2013;76(1):1-29. https://doi.org/10.3114/sim0019
  61. Wikee S, Lombard L, Crous PW, et al. Phyllosticta capitalensis, a widespread endophyte of plants. Fungal Divers. 2013;60(1):91-105. https://doi.org/10.1007/s13225-013-0235-8
  62. Lee B-H, Kim D-Y, Park H, et al. Identification of unrecorded endophytic fungi isolated from leaves of woody plants in Jejudo, Korea. K J Mycol. 2016;44(4):252-258.
  63. Rabenhorst L. Algen Europa's, fortsetzung der algen sachsens, resp. Mittel-Europa's. Dec 29-30. Nos 1281-1300. Dresden. 1862.
  64. Rossman AY, Samuels GJ, Rogerson CT, et al. Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Stud Mycol. 1999;49:1-248.
  65. Allescher A. Fungi imperfecti: gefarbt-sporige sphaerioideen. In: Rabenhorst's Kryptogamen-Flora von Deutschland. Osterreichund der Schweiz. 2nd ed. Leipzig: Kummer; 1902. p. 65-128.
  66. De Silva NI, Phookamsak R, Maharachchikumbura SSN, et al. Monochaetia ilexae sp. nov. (Pestalotiopsidaceae) from Yunnan Province in China. Phytotaxa. 2017;291(2):123-132. https://doi.org/10.11646/phytotaxa.291.2.3
  67. Subramaniam Y, Subbiah R, Balan L, et al. Bioprospecting of bioactive metabolites from Monochaetia karsteni. J Pure Appl Microbiol. 2020;14(2):1557-1566. https://doi.org/10.22207/jpam.14.2.54
  68. Zhao J, Zhou L, Wang J. Endophytic fungi for producing bioactive compounds originally from their host plants. In: Mendez-Vilas dA, editor. Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz: Formatex Research Center; 2011. p. 567-576.
  69. Saccardo PA, Paoletti G. Mycetes malacenses. Funghi della penisola di malacca raccolti nel 1885 dell. Ab Benedetto Scortechini. 1888;6:387-428.
  70. Hyde KD, Eriksson OE, Yue JZ. Roussoella, an ascomycete genus of uncertain relationships with a Cytoplea anamorph. Mycol Res. 1996;100(12):1522-1528. https://doi.org/10.1016/S0953-7562(96)80089-X
  71. Zhang J-YI, Phookamsak R, Boonmee S, et al. Roussoella guttulata (Roussoellaceae, Pleosporales), a novel bambusicolous ascomycete from Thailand. Phytotaxa. 2020;471(3):221-233. https://doi.org/10.11646/phytotaxa.471.3.4
  72. Phookamsak R, Hyde KD, Rajesh Jeewon R, et al. Fungal diversity notes 929-1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Divers. 2019;95(1):1-273. https://doi.org/10.1007/s13225-019-00421-w
  73. Liu J-K, Phookamsak R, Dai D-Q, et al. Roussoellaceae, a new pleosporalean family to accommodate the genera Neoroussoella gen. nov., Roussoella and Roussoellopsis. Phytotaxa. 2014;181(1):1-33. https://doi.org/10.11646/phytotaxa.181.1.1
  74. Poli A, Bovio E, Ranieri L, et al. News from the sea: a new genus and seven new species in the Pleosporalean families Roussoellaceae and Thyridariaceae. Diversity. 2020;12(4):144. https://doi.org/10.3390/d12040144
  75. Timnick MB, Lilly VG, Barnett HL. The effect of nutrition on the sporulation of Melanconium fuligineum in culture. Mycologia. 1951;43(6):625-634. https://doi.org/10.2307/3755486
  76. Su Y-Y, Qi Y-L, Cai L. Induction of sporulation in plant pathogenic fungi. Mycology. 2012;3:195-200.
  77. Engelkes C, Nuclo R, Fravel D. Effect of carbon, nitrogen, and C: N ratio on growth, sporulation, and biocontrol efficacy of Talaromyces flavus. Phytopathology. 1997;87(5):500-505. https://doi.org/10.1094/PHYTO.1997.87.5.500
  78. Gao L, Liu X. Sporulation of several biocontrol fungi as affected by carbon and nitrogen sources in a two-stage cultivation system. J Microbiol. 2010;48(6):767-770. https://doi.org/10.1007/s12275-010-0049-2