Acknowledgement
이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1063286).
References
- Bae, S., & Yu, J. (2018). Predicting the real estate price index using machine learning methods and time series analysis model, Housing Studies Review, 26(1), 107-133.
- Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization, The Journal of Machine Learning Research, 13(1), 281-305.
- Choi, M., & Kwon, O. (2008). Construction material costincrease and countermeasures, Construction trend briefing by Korea Institute of Construction Industry, 6, 2-34.
- Choi, Y., Yim, H., & Park, B. (2009). Analysis on the Lotting Price Fluctuation of the Multi-Family Attached House According to the Construction Material Cost Variation, Journal of The Korean Society of Civil Engineers, 29(6D), 753-760.
- Geron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2E), O'Reilly, p.31.
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory, Neural computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Howard, R., & Matheson, J. (2005). Influence diagram retrospective, Decision Analysis, 2(3), 144-147. https://doi.org/10.1287/deca.1050.0050
- Index.go.kr (2022). Building permit and construction start status. accessed Jan 17, 2022, https://www.index.go.kr/potal/stts/idxMain/selectPoSttsIdxSearch.do?idx_cd=1224.
- Jeong, D. (2017). Trend on Artificial Intelligence Technology and Its Related Industry, Korea Institute of Information Technology Magazine, 15(2), 21-28. https://doi.org/10.14801/jkiit.2017.15.5.21
- Ji, S., Goo, Y., Baek, U., Park, J., & Yoon, S. (2019). LSTM Learning Data Selection Technique for Number of Bitcoin Transactions Prediction, KNOM Conference, Korea Information and Communications Society.
- Kang, M. (2020). Comparison of Gradient Descent for Deep Learning, Journal of the Korea Academia-Industrial cooperation Society, 21(2), 189-194. https://doi.org/10.5762/KAIS.2020.21.2.189
- Kim, B., Jung, S., Kim, M., Kim, J., Lee, & H., Kim, S. (2020). Solar Power Generation Forecasting based on LSTM considering Weather Conditions, Journal of Korean Institute of Intelligent Systems, 30(1), 7-12. https://doi.org/10.5391/jkiis.2020.30.1.7
- Kosis.kr (2022a). Producers price index (Rebar and bar). accessed Jan 17, 2022, https://kosis.kr/statHtml/statHtml.do?orgId=301&tblId=DT_013Y202&conn_path=I3.
- Kosis.kr (2022b). Import price indexes (Rebar and bar). accessed Jan 17, 2022, https://kosis.kr/statHtml/statHtml.do?orgId=301&tblId=DT_018Y301.
- Kosis.kr (2022c). Comprehensive raw material import trend. accessed Jan 17, 2022, https://kosis.kr/statHtml/statHtml.do?orgId=392&tblId=DT_AA12.
- Kosis.kr (2022d). Steel production (Rebar). accessed Jan 17, 2022, https://kosis.kr/statHtml/statHtml.do?orgId=363&tblId=TX_36301_A000.
- Kpi.or.kr (2022). Deformed reinforcing bar. accessed Jan 17, 2022, https://www.kpi.or.kr/www/price/detail_change.asp?CATE_CD=10100104&ITEM_SPEC_CD=10011.
- Lahari, M., Ravi, D., & Bharathi, R. (2018). Fuel Price Prediction Using RNN, International Conference on Advances in Computing, Communications and Informatics (ICACCI), IEEE, 1510-1514.
- Larochelle, H., Erhan, D., Courville, A., Bergstra, J., & Bengio Y. (2007). An empirical evaluation of deep architectures on problems with many factors of variation, Proceedings of the 24th International Conference on Machine Learning, 473-480.
- Lee, J., Yoo, J., Kim, C., Lee, G., & Lim, B. (2008). How to calculate the order point considering the fluctuations in demand for materials at construction sites, Journal of the Architectural Institute of Korea-Structural System, 24 (10), 117-125.
- Lee, D., & Kim, K. (2019). Deep Learning Based Prediction Method of Long-term Photovoltaic Power Generation Using Meteorological and Seasonal Information, Journal of Society for e-Business Studies, 24(1), 1-16. https://doi.org/10.20428/jss.v24i4.1445
- Lee, Y., & Kim, K. (2020). Experimental Study on the Expansion of the Short-term Prediction Range of Rebar Prices Using Deep Learning, Journal of The Architectural Institute of Korea, 36(12), 265-272. https://doi.org/10.5659/JAIK.2020.36.12.265
- Lee, M., Kim, J., & Jang, B. (2020). Chicken pox prediction using deep learning model, Transactions of the Korean Institute of Electrical Engineers, 69(1), 127-137. https://doi.org/10.5370/kiee.2020.69.1.127
- Lee, Y., & Kim, K. (2021). Experimental Study on Long-Term Prediction of Rebar Price Using Deep Learning Recursive Prediction Method, Korean Journal of Construction Engineering and Management, 22(3), 21-30. https://doi.org/10.6106/KJCEM.2021.22.3.021
- Lee, Y., Choi, Y., Cho, H., & Kim, J. (2021). Prediction of Distillation Column Temperature Using Machine Learning and Data Preprocessing. Korean Chemical Engineering Research, 59(2), 191-199. https://doi.org/10.9713/KCER.2021.59.2.191
- Lee, Y. (2022). Long and Short Term Prediction of Rebar Price Using Deep learning and Related Techniques, Ph.D. Dissertation, Konkuk University.
- Polson, N., & Sokolov, V. (2017). Deep learning forshort-term traffic flow prediction, Transportation Research, 79, 1-17.
- Schuster, M., & Paliwal, K. (1997). Bidirectional recurrent neural networks, IEEE transactions on Signal Processing, 45(11), 2673-2681. https://doi.org/10.1109/78.650093
- Scikit-learn (2022). https://scikit-learn.org/stable/modules/classes.html, accessed Jan 17, 2022.
- Taieb, S., Sorjamaa, A., & Bontempi, G. (2010). Multiple-output modeling for multi-step-ahead time series forecasting, Neurocomputing, 73(10-12), 1950-1957. https://doi.org/10.1016/j.neucom.2009.11.030
- Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Climate research, 30(1), 79-82. https://doi.org/10.3354/cr030079
- Yadav, S., & Shukla, S. (2016). Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification, International conference on advanced computing, IEEE, 78-83.