Acknowledgement
The authors thank the referee for very careful reading of the manuscript and many valuable suggestions that improved the paper by much. This article was supported by the Science and Technology Research Project of Education Department of Jilin Province, China(JJKH20210563KJ).
References
- A. Badawi, On abelian π-regular rings, Comm. Algebra 25 (1997), no. 4, 1009-1021. https://doi.org/10.1080/00927879708825906
- A. W. Chatters and W. M. Xue, On right duo p.p. rings, Glasgow Math. J. 32 (1990), no. 2, 221-225. https://doi.org/10.1017/S0017089500009253
- H. Chen, Y. Lee, and Z. Piao, Structures related to right duo factor rings, Kyungpook Math. J. 61 (2021), no. 1, 11-21. https://doi.org/10.5666/KMJ.2021.61.1.11
- K.-J. Choi, T. K. Kwak, and Y. Lee, Reversibility and symmetry over centers, J. Korean Math. Soc. 56 (2019), no. 3, 723-738. https://doi.org/10.4134/JKMS.j180364
- C. Faith, Algebra. II, Grundlehren der Mathematischen Wissenschaften, No. 191, Springer-Verlag, Berlin, 1976.
- E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89 (1958), 79-91. https://doi.org/10.2307/1993133
- K. R. Goodearl, von Neumann regular rings, Monographs and Studies in Mathematics, 4, Pitman (Advanced Publishing Program), Boston, MA, 1979.
- I. N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago, IL, 1969.
- Y. Hirano, C. Hong, J. Kim, and J. K. Park, On strongly bounded rings and duo rings, Comm. Algebra 23 (1995), no. 6, 2199-2214. https://doi.org/10.1080/00927879508825341
- C. Y. Hong, H. K. Kim, N. K. Kim, T. K. Kwak, and Y. Lee, One-sided duo property on nilpotents, Hacet. J. Math. Stat. 49 (2020), no. 6, 1974-1987. https://doi.org/10.15672/hujms.571016
- C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52. https://doi.org/10.1016/S0022-4049(01)00149-9
- H. Jin, N. K. Kim, Y. Lee, Z. Piao, and M. Ziembowski, Structure of rings with commutative factor rings for some ideals contained in their centers, Hacet. J. Math. Stat. 50 (2021), no. 5, 1280-1291. https://doi.org/10.15672/hujms.729739
- N. K. Kim, T. K. Kwak, and Y. Lee, On a generalization of right duo rings, Bull. Korean Math. Soc. 53 (2016), no. 3, 925-942. https://doi.org/10.4134/BKMS.b150441
- J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Co., Waltham, MA, 1966.
- Y. Lee, On generalizations of commutativity, Comm. Algebra 43 (2015), no. 4, 1687-1697. https://doi.org/10.1080/00927872.2013.876035
- N. H. McCoy, Generalized regular rings, Bull. Amer. Math. Soc. 45 (1939), no. 2, 175-178. https://doi.org/10.1090/S0002-9904-1939-06933-4
- M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. http://projecteuclid.org/euclid.pja/1195510144 https://doi.org/10.3792/pjaa.73.14
- G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.2307/1996398