DOI QR코드

DOI QR Code

Inhibitory activity of Terminalia chebula extract against TNF-α/IFN-γ-induced chemokine increase on human keratinocyte, HaCaT cells

TNF-α/IFN-γ 유도된 각질형성세포 염증에서 가자 추출물의 케모카인 저해 효과

  • Jo, Il-Joo (Central Stroke Center of Korean medicine, College of Korean Medicine, Wonkwang University)
  • 조일주 (원광대학교 한의과대학 뇌졸중한의중점연구센터)
  • Received : 2022.05.21
  • Accepted : 2022.05.25
  • Published : 2022.05.30

Abstract

Objectives : Terminalia chebula (TC) has been used as a traditional remedy to treat gastrointestinal infectious and inflammatory diseases. However, its protective effects and mechanisms against skin inflammation have not been well-elucidated. Thus, the aim of this study is to evaluate the protective effects of the TC water extract and also to suggest a putative mechanism of TC against skin injury on human keratinocytes, HaCaT cells. Methods : HaCaT cells were pre-treated with TC for 1 h and then stimulated with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) (10 ng/mL each) to induce skin inflammation and injury. After 24 h, the cells were harvested to evaluate the expression of Th2 chemokines, such as C-C motif chemokine ligand 5 (CCL5, also known as RANTES), C-C chemokine ligand 17 (CCL17, also known as TARC) and C-C chemokine ligand 22 (CCL22, also known as MDC). To investigate the regulatory mechanisms of TC, we also assessed the phosphorylation of signal transducer and activator of transcription 1 (STAT1) signaling pathways in HaCaT cells. Results : Treatment of TC decreased the mRNA levels of RANTES, TARC and MDC with a concentration dependent manner against co-stimulation of TNF-α and IFN-γ. In addition, TC significantly reduced TNF-α and IFN-γ induced phosphorylation of STAT1. Conclusions : In summary, we propose that TC may be a promising candidate for anti-inflammatory skin protector through the inhibition of chemokines via STAT1 deactivation.

Keywords

References

  1. Benedetto AD, Kubo A, Beck LA. Skin barrier disruption: a requirement for allergen sensitization? J Invest Dermatol. 2012;132:949-963. https://doi.org/10.1038/jid.2011.435
  2. Hudson TJ. Skin barrier function and allergic risk. Nat Genet. 2006;38(4):399-400. https://doi.org/10.1038/ng0406-399
  3. Melik-Parsadaniantz S, Rostene W. Chemokines and neuromodulation. J Neuroimmunol. 2008;198(1-2):62-68. https://doi.org/10.1016/j.jneuroim.2008.04.022
  4. Qi XF, Kim DH, Yoon YS, Li JH, Jin D, Teng YC, Kim SK, Lee KJ. Fluvastatin inhibits expression of the chemokine MDC/CCL22 induced by interferon-gamma in HaCaT cells, a human keratinocyte cell line. Br J Pharmacol. 2009;157:1441-1450. https://doi.org/10.1111/j.1476-5381.2009.00311.x
  5. Pivarcsi A, Homey B. Chemokine networks in atopic dermatitis: traffic signals of disease. Curr Allergy Asthma Rep. 2005;5(4):284-290. https://doi.org/10.1007/s11882-005-0068-y
  6. Barker JN, Sarma V, Mitra RS, Dixit VM, Nickoloff BJ. Marked synergism between tumor necrosis factor-alpha and interferongamma in regulation of keratinocyte-derived adhesion molecules and chemotactic factors. J Clin Invest. 1990;85(2):605-608. https://doi.org/10.1172/JCI114481
  7. Amarbayasgalan T, Takahashi H, Dekio I, Morita E. Interleukin-8 content in the stratum corneum as an indicator of the severity of inflammation in the lesions of atopic dermatitis. Int Arch Allergy Immunol. 2013;16(1)0:63-74. https://doi.org/10.1159/000339666
  8. Saeki H, Tamaki K. Thymus and activation regulated chemokine (TARC)/CCL17 and skin diseases. J Dermatol Sci. 2006;43(2):75-84. https://doi.org/10.1016/j.jdermsci.2006.06.002
  9. Najjar I, Fagard R. STAT1 and pathogens, not a friendly relationship. Biochimie. 2010;92(5):425-444. https://doi.org/10.1016/j.biochi.2010.02.009
  10. Akira S. Functional roles of STAT family proteins: lessons from knockout mice. Stem Cells. 1999;17(3):138-146. https://doi.org/10.1002/stem.170138
  11. Ju SM, Song HY, Lee SJ, Seo WY, Sin DH, Goh AR, Kang YH, Kang IJ, Won MH, Yi JS, Kwon DJ, Bae YS, Choi SY, Park JS. Suppression of thymus-and activation-regulated chemokine (TARC/CCL17) production by 1,2,3,4,6-penta-O-galloyl-beta-D-glucose via blockade of NF-kappaB and STAT1 activation in the HaCaT cells. Biochem Biophys Res Commun. 2009;387(1):115-120. https://doi.org/10.1016/j.bbrc.2009.06.137
  12. Kwon DJ, Bae YS, Ju SM, Goh AR, Youn GS, Choi SY, Park J. Casuarinin suppresses TARC/CCL17 and MDC/CCL22 production via blockade of NF-kappaB and STAT1 activation in HaCaT cells. Biochem Biophys Res Commun. 2012;417(4):1254-1259. https://doi.org/10.1016/j.bbrc.2011.12.119
  13. Sung YY, Kim HK. Illicium verum extract suppresses IFN-gammainduced ICAM-1 expression via blockade of JAK/STAT pathway in HaCaT human keratinocytes. J Ethnopharmacol. 2013:149(3);626-632. https://doi.org/10.1016/j.jep.2013.07.013
  14. Kang GJ, Dang HT, Han SC, Kang NJ, Koo DH, Koh YS, Hyun JW, Kang HK, Jung JH, Yoo ES. Methyl 5-chloro-4,5-didehydrojasmonate (J7) inhibits macrophage-derived chemokine production via down-regulation of the signal transducers and activators of transcription 1 pathway in HaCaT human keratinocytes. Chem Pharm Bull. 2013;61(10):1002-1008. https://doi.org/10.1248/cpb.c13-00145
  15. Han EH, Hwang YP, Choi JH, Yang JH, Seo JK, Chung YC, Jeong HG. Psidium guajava extract inhibits thymus and activationregulated chemokine (TARC/CCL17) production in human keratinocytes by inducing heme oxygenase-1 and blocking NF-kappaB and STAT1 activation. Environ Toxicol Pharmacol. 2011;32(2):136-145. https://doi.org/10.1016/j.etap.2011.04.004
  16. Hongqin T, Xinyu L, Heng G, Lanfang X, Yongfang W, Shasha S. Triptolide inhibits IFN-gamma signaling via the Jak/STAT pathway in HaCaT keratinocytes. Phytotherapy Research. 2011;25(11):1678-1685. https://doi.org/10.1002/ptr.3471
  17. Kim IR KH, Kuk YB, Park SJ, Park YK, Park JH, Seo BI, Seo YB, Shin MK, Lee YJ, LeeYC, Lee JH, Leem KH, Cho SI, Chung JK, Joo YS, Choi HY. Boncho-Hak. Seoul : Young-Lim Press. 2007 : 671-2.
  18. Park JO. Effects of methanol extract from Terminalia chebulae on renal and pulmonary toxicities induced by paraquat in rats. J Life Sci 2008;8:129-135. https://doi.org/10.5352/JLS.2008.18.1.129
  19. Lee KS, Kim SH, Sim KC, Park CS, Shin YS. Antimicrobial activity of Terminalia chebula Retz. extract of against intestinal pathogens. Korean J Food & Nutr 1997;10: 559-563.
  20. Achari C, Reddy GV, Reddy TC, Reddanna P. Chebulagic acid synergizes the cytotoxicity of doxorubicin in human hepatocellular carcinoma through COX-2 dependant modulation of MDR-1. Med Chem. 2011;7:432-442. https://doi.org/10.2174/157340611796799087
  21. Bag A, Kumar Bhattacharyya S, Kumar Pal N, Ranjan Chattopadhyay R. Anti-inflammatory, anti-lipid peroxidative, antioxidant and membrane stabilizing activities of hydroalcoholic extract of Terminalia chebula fruits. Pharm Biol. 2013;51(12):1515-1520. https://doi.org/10.3109/13880209.2013.799709
  22. Silawat N, Gupta VB. Chebulic acid attenuates ischemia reperfusion induced biochemical alteration in diabetic rats. Pharm Biol. 2013;51:23-29. https://doi.org/10.3109/13880209.2012.698288
  23. Kesharwani A, Polachira SK, Nair R, Agarwal A, Mishra NN, Gupta SK. Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids. BMC Complement Altern Med. 2017;17(1):110. https://doi.org/10.1186/s12906-017-1620-8
  24. Patil VS, Harish DR, Vetrivel U, Roy S, Deshpande SH, Hegde HV. Hepatitis C Virus NS3/4A Inhibition and Host Immunomodulation by Tannins from Terminalia chebula: A Structural Perspective. Molecules. 2022;27(3):1076. https://doi.org/10.3390/molecules27031076
  25. Saleem A, Husheem M, Harkonen P, Pihlaja K. Inhbition of cancer cell growth by crude extract and the phenolics of Terminalia chebula Retz. fruit. J Ethnopharmacol. 2002;81:327-336. https://doi.org/10.1016/S0378-8741(02)00099-5
  26. Sabu MC, Kuttan R. Anti-diabetic activity of medicinal plants and its relationship with their antioxidant property. J Ethnopharmacol. 2002;81:155-160. https://doi.org/10.1016/S0378-8741(02)00034-X
  27. Malekzadeh F, Ehsanifar H, Shahamat M, Levin M, Colwell RR. Antibacterial activity of black myrobalan (Terminalia chebula Retz) against Helicobacter pylori. Int J Antimicrob Ag. 2001;18:85-88. https://doi.org/10.1016/S0924-8579(01)00352-1
  28. Jagtap AG, Karkera SG. Potential aqueous extract of Terminalia Chebula as an anticaries agent. J Ethnopharmocol. 1999;68:299-306. https://doi.org/10.1016/S0378-8741(99)00058-6
  29. Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol. 2014;14:289-301. https://doi.org/10.1038/nri3646
  30. Abramovits W. Atopic dermatitis. J Am Acad Dermatol. 2005;53:86-93.
  31. Pastore S, Mascia F, Girolomoni G. The contribution of keratinocytes to the pathogenesis of atopic dermatitis. Eur J Dermatol. 2006;16:125-131.
  32. Jo IJ, Choi MO. Protective Effects of Kyungohkgo on Atopic Dermatitis in HaCaT Cells. J Kor Soc Cosmetol. 2020;27(5):1286-1292.
  33. Wuthrich B. Epidemiology of the allergic diseases: are they really on the increase? Int Arch Allergy Appl Immunol. 1989;90:3-10. https://doi.org/10.1159/000235067
  34. Luster AD. The role of chemokines in linking innate and adaptive immunity. Curr Opin Immunol. 2002;14(1):129-135. https://doi.org/10.1016/S0952-7915(01)00308-9
  35. Jahnz-Rozyk K, Targowski T, Paluchowska E, Owczarek W, Kucharczyk A. Serum thymus and activation-regulated chemokine, macrophage-derived chemokine and eotaxin as markers of severity of atopic dermatitis. Allergy. 2005;60(5):685-688. https://doi.org/10.1111/j.1398-9995.2005.00774.x
  36. Campbell JJ, Haraldsen G, Pan J, Rottman J, Qin S, Ponath P, Andrew DP, Warnke R, Ruffing N, Kassam N, Wu L, Butcher EC. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature. 1999;400(6746):776-780. https://doi.org/10.1038/23495
  37. Song TW, Sohn MH, Kim ES, Kim KW, Kim KE. Increased serum thymus and activation-regulated chemokine and cutaneous T cell-attracting chemokine levels in children with atopic dermatitis. Clin Exp Allergy. 2006;36(3):346-351. https://doi.org/10.1111/j.1365-2222.2006.02430.x
  38. Nakazato J, Kishida M, Kuroiwa R, Fujiwara J, Shimoda M, Shinomiya N. Serum levels of Th2 chemokines, CCL17, CCL22, and CCL27, were the important markers of severity in infantile atopic dermatitis. Pediatr Allergy Immunol. 2008;19(7):605-613. https://doi.org/10.1111/j.1399-3038.2007.00692.x
  39. Qi XF, Kim DH, Yoon YS, Li JH, Song SB, Jin D, Huang XZ, Teng YC, Lee KJ. The adenylyl cyclase-cAMP system suppresses TARC/CCL17 and MDC/CCL22 production through p38 MAPK and NF-kappaB in HaCaT keratinocytes. Mol Immunol. 2009;46(10):1925-1934. https://doi.org/10.1016/j.molimm.2009.03.018
  40. Kim WH, An HJ, Kim JY, Gwon MG, Gu H, Lee SJ, Park JY, Park KD, Han SM, Kim MK, Park KK. Apamin inhibits TNF-α-and IFN-γ-induced inflammatory cytokines and chemokines via suppressions of NF-κB signaling pathway and STAT in human keratinocytes. Pharmacol Rep. 2017;69(5):1030-1035. https://doi.org/10.1016/j.pharep.2017.04.006
  41. Kovacic JC, Gupta R, Lee AC, Ma M, Fang F, Tolbert CN, Walts AD, Beltran LE, San H, Chen G, St Hilaire C, Boehm M. Stat3-dependent acute Rantes production in vascular smooth muscle cells modulates inflammation following arterial injury in mice. J Clin Invest. 2010;120(1):303-314. https://doi.org/10.1172/JCI40364