DOI QR코드

DOI QR Code

Electrochemical Impedance Spectroscopy (EIS) Performance Analysis and Challenges in Fuel Cell Applications

  • 투고 : 2021.12.27
  • 심사 : 2022.03.19
  • 발행 : 2022.05.28

초록

Electrochemical impedance spectroscopy (EIS) is a unique non-destructive technique employed to analyze various devices in different energy storage applications. It characterizes materials and interfaces for their properties in heterogeneous systems employing equivalent circuits as models. So far, it has been used to analyze the performance of various photovoltaic cells, fuel cells, batteries, and other energy storage devices, through equivalent circuit designing. This review highlights the diverse applications of EIS in fuel cells and specific parameters affecting its performance. A particular emphasis has been laid on the challenges faced by this technique and their possible solutions.

키워드

참고문헌

  1. J. Huang, Y. Gao, J. Luo, S. Wang, C. Li, S. Chen, J. Zhang, J. Electrochem. Soc., 2020, 167(16), 160502. https://doi.org/10.1149/1945-7111/abc90c
  2. X. Liu, J. Zhao, Y. Cao, W. Li, Y. Sun, J. Lu, Y. Men, J. Hu, RSC Adv., 2015, 5(59), 47506-47510. https://doi.org/10.1039/C5RA05231A
  3. O. Gharbi, M.T.T. Tran, B. Tribollet, M. Turmine, V. Vivier, Electrochim. Acta, 2020, 343, 136109. https://doi.org/10.1016/j.electacta.2020.136109
  4. X. Jin, Y. Li, J. Jiang, S. Xiao, J. Yang, J. Yao, Ionics, 2021, 27(8), 3291-3299. https://doi.org/10.1007/s11581-021-04128-4
  5. Electrochemical Impedance Spectroscopy. https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/Insulators/Electrochemical_Impedance_Spectroscopy (accebed 15 July, 2021).
  6. Electrochemical Impedance Spectroscopy (EIS). https://www.palmsens.com/knowledgebase-article/electrochemical-impedance-spectroscopy/ (accebed 17 August, 2021).
  7. I.C.P. Margarit-Mattos, Electrochim. Acta, 2020, 354, 136725. https://doi.org/10.1016/j.electacta.2020.136725
  8. F. Ciucci, Curr. Opin. Electrochem., 2019, 13, 132-139. https://doi.org/10.1016/j.coelec.2018.12.003
  9. A.R.C. Bredar, A.L. Chown, A.R. Burton, B.H. Farnum, ACS Appl. Energy Mater., 2020, 3, 66-98. https://doi.org/10.1021/acsaem.9b01965
  10. H.H. Hernandez, A.M.R. Reynoso, J.C.T. Gonzalez, C.O.G. Moran, J.G.M. Hernandez, A.M. Ruiz, R.O. Cruz, T. Gonzalez, Electrochemical Impedance Spectroscopy, 2020, 137-144.
  11. G. Instruments, Complex impedance in Corrosion, 2007, 1-30.
  12. Diffusion impedance. http://lacey.se/science/eis/diffusion-impedance/ (accebed 27 August, 2021).
  13. X. Dominguez-Benetton, Biocomplexity and bioelectrochemical influence of gasoline pipelines biofilms in carbon steel deterioration: A transmibion lines and transfer functions approach, PhD, Instituto Mexicano del Petroleo, 2007.
  14. The Constant Phase Element (CPE). http://www.consultrsr.net/resources/eis/cpe1.htm (accebed 13 September, 2021).
  15. J.C. Martins, J.C.d.M. Neto, R.R. Pabos, L.A. Pocrifka, Solid State Ionics, 2020, 346, 115198. https://doi.org/10.1016/j.ssi.2019.115198
  16. R.R. Gaddam, L. Katzenmeier, X. Lamprecht, A.S. Bandarenka, Phys. Chem. Chem., Phys., 2021, 23, 12926-12944. https://doi.org/10.1039/D1CP00673H
  17. L. Carrette, K.A. Friedrich, U. Stimming, Chem. Phys. Chem., 2000, 1(4), 162-193. https://doi.org/10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO;2-Z
  18. R. O'hayre, S.W. Cha, W. Colella, F.B. Prinz, Fuel cell fundamentals, John Wiley & Sons, 2016.
  19. Z. He, F. Mansfeld, Energy Environ. Sci., 2009, 2(2), 215-219. https://doi.org/10.1039/B814914C
  20. Y. Fan, E. Sharbrough, H. Liu, Environ. Sci. Technol., 2008, 42(21), 8101-8107. https://doi.org/10.1021/es801229j
  21. P. Liang, X. Huang, M.Z. Fan, X.X. Cao, C. Wang, Appl. Microbiol. Biotechnol., 2007, 77(3), 551-558. https://doi.org/10.1007/s00253-007-1193-4
  22. J.W. Wurst, S.A. Garron, A.M. Dob, Apparatus for measuring internal resistance of wet cell storage batteries having non-removable cell caps, U.S. Patent 5,047,722, 1991.
  23. S.O. Engblom, M. Wasberg, J. Bobacka, A. Ivaska, Experiences of an on-line Fourier transform faradaic admittance measurement (FT-FAM) system based on digital signal procebors, Contemporary electroanalytical chemistry, Springer, 1990, 21-29.
  24. R.J. O'Halloran, L.F.G. Williams, C.P. Lloyd, Corrosion, 1984, 40(7), 344-349. https://doi.org/10.5006/1.3593936
  25. J. Larminie, A. Dicks, M.S. McDonald, Operational Fuel Cell Voltages, Fuel cell systems explained, John Wiley & Sons, 2003.
  26. D. Kashyap, P.K. Dwivedi, J.K. Pandey, Y.H. Kim, G.M. Kim, A. Sharma, S. Goel, Int. J. Hydr. Energy, 2014, 39(35), 20159-20170. https://doi.org/10.1016/j.ijhydene.2014.10.003
  27. R. De Levie, A.A. Husovsky, J. Electroanal. Chem. Interfacial Electrochem., 1969, 20(2), 181-193. https://doi.org/10.1016/S0022-0728(69)80119-1
  28. F. Davis, S.P. Higson, Biosens. Bioelectron., 2007, 22(7), 1224-1235. https://doi.org/10.1016/j.bios.2006.04.029
  29. J.P. Diard, B. Le Gorrec, C. Montella, J. Electroanal. Chem., 1994, 377(1-2), 61-73. https://doi.org/10.1016/0022-0728(94)03624-1
  30. D.E. Smith, Anal. Chem., 1976, 48(2), 221A-240.
  31. S.C. Creason, J.W. Hayes, D.E. Smith, J. Electroanal. Chem. Interfacial Electrochem., 1973, 47(1), 9-46. https://doi.org/10.1016/S0022-0728(73)80343-2
  32. K. Darowicki, K. Andrearczyk, J. Power Sources, 2009, 189(2), 988-993. https://doi.org/10.1016/j.jpowsour.2009.01.039
  33. A. Arutunow, K. Darowicki, Electrochim. Acta, 2008, 53(13), 4387-4395. https://doi.org/10.1016/j.electacta.2008.01.063
  34. J.S. Yoo, S.M. Park, Anal. Chem., 2000, 72(9), 2035-2041. https://doi.org/10.1021/ac9907540
  35. B.Y. Chang, S.Y. Hong, J.S. Yoo, S.M. Park, J. Phys. Chem. B, 2006, 110(39), 19386-19392. https://doi.org/10.1021/jp061773y
  36. J. Hazi, D.M. Elton, W.A. Czerwinski, J. Schiewe, V.A. Vicente-Beckett, A.M. Bond, J. Electroanal. Chem., 1997, 437(1-2), 1-15. https://doi.org/10.1016/S0022-0728(96)05038-3
  37. B.Y. Chang, S.M. Park, Annu. Rev. Anal. Chem., 2010, 3, 207-229. https://doi.org/10.1146/annurev.anchem.012809.102211
  38. G.A. Ragoisha, A.S. Bondarenko, Electrochim. Acta, 2005, 50(7-8), 1553-1563. https://doi.org/10.1016/j.electacta.2004.10.055
  39. A.S. Bondarenko, G.A. Ragoisha, J. Solid State Electrochem., 2005, 9(12), 845-849. https://doi.org/10.1007/s10008-005-0025-7
  40. H. Yuan, H. Dai, X. Wei, P. Ming, Chem. Eng. J., 2021, 418, 129358. https://doi.org/10.1016/j.cej.2021.129358
  41. C.M.A. Brett, Molecules, 2022, 27(5), 1497. https://doi.org/10.3390/molecules27051497
  42. X. Zhang, Y. Jiang, L. Huang, W. Chen, D. Brett, Electrochim. Acta, 2021, 391, 138925. https://doi.org/10.1016/j.electacta.2021.138925
  43. J. Mitzel, J. Sanchez?Monreal, D. Garcia?Sanchez, P. Gazdzicki, M. Schulze, F. Haubler, J. Hunger, G. Schlumberger, E. Janicka, M. Mielniczek, L. Gawel, Fuel Cells, 2020, 20(4), 403-412. https://doi.org/10.1002/fuce.201900193
  44. S. Simon Araya, F. Zhou, S. Lennart Sahlin, S. Thomas, C. Jeppesen, S. Knudsen Kaer, Energies, 2019, 12(1), 152. https://doi.org/10.3390/en12010152
  45. R. Caponetto, N. Guarnera, F. Matera, E. Privitera, M.G. Xibilia, Application of Electrochemical Impedance Spectroscopy for prediction of Fuel Cell degradation by LSTM neural networks, 29th mediterr. Conference on Control and Automation (MED), IEEE Publications, 2021.
  46. K. Meng, H. Zhou, B. Chen, Z. Tu, Energy, 2021, 224, 120168. https://doi.org/10.1016/j.energy.2021.120168
  47. A.A. Bojang, H.S. Wu, Catalysts, 2020, 10(7), 782. https://doi.org/10.3390/catal10070782
  48. B. Kim, I.S. Chang, R.M. Dinsdale, A.J. Guwy, Electrochim. Acta, 2021, 366, 137388. https://doi.org/10.1016/j.electacta.2020.137388
  49. R. Ahmed, K. Reifsnider, Study of influence of electrode geometry on impedance spectroscopy, International Conference on Fuel Cell Science, Engineering and Technology, 2010, 44052, 167-175.
  50. K. Ariyoshi, M. Tanimoto, Y. Yamada, Electrochim. Acta, 2020, 364, 137292. https://doi.org/10.1016/j.electacta.2020.137292
  51. A.K. Manohar, O. Bretschger, K.H. Nealson, F. Mansfeld, Bioelectrochemistry, 2008, 72(2), 149-154. https://doi.org/10.1016/j.bioelechem.2008.01.004
  52. E. Martin, B. Tartakovsky, O. Savadogo, Electrochim. Acta, 2011, 58, 58-66. https://doi.org/10.1016/j.electacta.2011.08.078
  53. Z. He, Y. Huang, A.K. Manohar, F. Mansfeld, Bioelectrochemistry, 2008, 74, 78-82. https://doi.org/10.1016/j.bioelechem.2008.07.007
  54. H.P. Djoko, E. Umar, G.S. Dani, Evaluation corrosion behavior on commercial stainleb steel SS 304 in Nano fluids water-Al2O3 system at different pH by Electrochemical Impedance Spectroscopy methods, Journal of Physics: Conference Series, IOP Publishing, 2020, 1428(1), 012025.
  55. K. Rabaey, J. Rodriguez, L.L. Blackall, J. Keller, P. Grob, D. Batstone, W. Verstraete, K.H. Nealson, I.S.M.E. J., 2007, 1(1), 9-18.
  56. G. Lepage, F.O. Albernaz, G. Perrier, G. Merlin, Bioresour. Technol., 2012, 124, 199-207. https://doi.org/10.1016/j.biortech.2012.07.067
  57. Y. Huang, Z. He, F. Mansfeld, Bioelectrochemistry, 2010, 79(2), 261-264. https://doi.org/10.1016/j.bioelechem.2010.03.009
  58. A.B. Dos Santos, J. Traverse, F.J. Cervantes, J.B. Van Lier, Biotechnol. Bioeng., 2005, 89(1), 42-52 . https://doi.org/10.1002/bit.20308
  59. R.P. Ramasamy, V. Gadhamshetty, L.J. Nadeau, and G.R. Johnson, Biotechnol. Bioeng., 2009, 104(5), 882-891. https://doi.org/10.1002/bit.22469
  60. M. Li, Z. Bai, Y. Li, L. Ma, A. Dai, X. Wang, D. Luo, T. Wu, P. Liu, L. Yang, K. Amine, Nat. Commun., 2019, 10, 1890. https://doi.org/10.1038/s41467-019-09638-4
  61. B. Wei, J. C. Tokash, F. Zhang, Y. Kim, B. E. Logan, Electrochim. Acta, 2013, 89, 45-51. https://doi.org/10.1016/j.electacta.2012.11.004
  62. F. Qian, M. Baum, Q. Gu, D.E. Morse, Lab Chip, 2009, 9(21), 3076-3081. https://doi.org/10.1039/b910586g
  63. R. Cheng, J. Xu, X. Wang, Q. Ma, H. Su, W. Yang, Q. Xu, Front. Chem., 2020, 8, 619. https://doi.org/10.3389/fchem.2020.00619
  64. S. Buteau, J.R. Dahn, J. Electrochem. Soc., 2019, 166, A1611. https://doi.org/10.1149/2.1051908jes
  65. S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, M.E. Orazem, Nat. Rev. Methods, Primers, 2021, 1, 41. https://doi.org/10.1038/s43586-021-00039-w
  66. X. Zhao, H. Zhuang, S.C. Yoon, Y. Dong, W. Wang, W. Zhao, J. Food Qual., 2017, 2017, 16.
  67. D. Qu, G. Wang, J. Kafle, J. Harris, L. Crain, Z. Jin, D. Zheng, Small Methods, 2018, 2(8), 1700342. https://doi.org/10.1002/smtd.201700342
  68. H. Schichlein, A.C. Muller, M. Voigts, A. Krugel, E. Ivers-Tiffee, J. Appl. Electrochem., 2002, 32(8), 875-882. https://doi.org/10.1023/A:1020599525160
  69. A. Weib, S. Schindler, S. Galbiati, M.A. Danzer, R. Zeis, Electrochim. Acta, 2017, 230, 391-398. https://doi.org/10.1016/j.electacta.2017.02.011
  70. B. Manikandan, V. Ramar, C. Yap, P. Balaya, J. Power Sources, 2017, 361, 300-309. https://doi.org/10.1016/j.jpowsour.2017.07.006