DOI QR코드

DOI QR Code

Copper Recovery from Printed Circuit Boards Waste Sludge: Multi-step Current Electrolysis and Modeling

  • Nguyen, Huyen T.T. (School of Chemical Engineering, Hanoi University of Science and Technology) ;
  • Pham, Huy K. (Hanoi University of Mining and Geology) ;
  • Nguyen, Vu A. (School of Chemical Engineering, Hanoi University of Science and Technology) ;
  • Mai, Tung T. (School of Chemical Engineering, Hanoi University of Science and Technology) ;
  • Le, Hang T.T. (School of Chemical Engineering, Hanoi University of Science and Technology) ;
  • Hoang, Thuy T.B. (School of Chemical Engineering, Hanoi University of Science and Technology)
  • 투고 : 2021.08.19
  • 심사 : 2021.10.14
  • 발행 : 2022.05.28

초록

Heavy metals recovery from Printed Circuit Boards industrial wastewater is crucial because of its cost effectiveness and environmental friendliness. In this study, a copper recovery route combining the sequential processes of acid leaching and LIX 984N extracting with an electrowinning technique from Printed Circuit Boards production's sludge was performed. The used residual sludge was originated from Hanoi Urban Environment One Member Limited Company (URENCO). The extracted solution from the printed circuit boards waste sludge containing a high copper concentration of 19.2 g/L and a small amount of iron (0.575 ppm) was used as electrolyte for the subsequent electrolysis process. By using a simulation model for multi-step current electrolysis, the reasonable current densities for an electrolysis time interval of 30 minutes were determined, to optimize the specific consumption energy for the copper recovery. The mathematical simulation model was built to calculate the important parameters of this process.

키워드

과제정보

This research was funded by the Hanoi University of Science and Technology (HUST) under project number T2020-TT-008.

참고문헌

  1. V. Forti, C. P. Balde, R. Kuehr, G. Bel, The Global Ewaste Monitor 2020: Quantities, flows and the circular economy potential, 2020.
  2. A. Islam, T. Ahmed, M. R. Awual, A. Rahman, M. Sultana, A. A. Aziz, M. U. Monir, S. H. Teo, M. Hasan, J. Clean. Prod., 2020, 244, 118815. https://doi.org/10.1016/j.jclepro.2019.118815
  3. S. Krishnan, N.S. Zulkapli, H. Kamyab, S. M. Taib, M. F. B. M. Din, Z. A. Majid, S. Chaiprapat, I. Kenzo, Y. Ichikawa, M. Nasrullah, S. Chelliapan, N. Othman, Environ. Technol. Innov., 2021, 22, 101525. https://doi.org/10.1016/j.eti.2021.101525
  4. F. Xie, T. Cai, Y. Ma, H. Li, C. Li, Z. Huang, G. Yuan, J. Clean. Prod., 2009, 17(16), 1494-1498. https://doi.org/10.1016/j.jclepro.2009.06.012
  5. F. A. D. Amaral, V. S. Dos Santos, A. M. Bernardes, Miner. Eng., 2014, 60, 1-7. https://doi.org/10.1016/j.mineng.2014.01.017
  6. Y. Tang, P.-H. Lee, K. Shih, Environ. Sci. Technol., 2013, 47(15), 8609-8615. https://doi.org/10.1021/es400404x
  7. S. Y. Chen, Q. Y. Huang, J. Chem. Technol. Biotechnol., 2014, 89(1), 158-164. https://doi.org/10.1002/jctb.4129
  8. P. Fornari, C. Abbruzzese, Hydrometallurgy, 1999, 52(3), 209-222. https://doi.org/10.1016/S0304-386X(99)00019-5
  9. H. B. Trinh, S. Kim, J. Lee, Metals, 2020, 10(2), 293. https://doi.org/10.3390/met10020293
  10. J. Jandova, T. Stefanova, R. Niemczykova, Hydrometallurgy, 2000, 57(1), 77-84. https://doi.org/10.1016/S0304-386X(00)00101-8
  11. P. P. Li, C. S. Peng, F. M. Li, S. X. Song, A. O. Juan, Int. J. Environ. Res., 2011, 5(3), 797-804.
  12. Z. Hydrometalurgicke, Z. Medi, Z. Chromu, K. Galvanickych, A. Miskufova, Acta Metall. Slovaca, 2006, 12(1), 293-302.
  13. J. E. Silva, D. Soares, A. P. Paiva, J. A. Labrincha, F. Castro, J. Hazard. Mater., 2005, 121(1-3), 195-202. https://doi.org/10.1016/j.jhazmat.2005.02.008
  14. J. Wazeck, Geologica Saxonica : J. Cent. Eur. Geol., 2013, 59, 251-258.
  15. J. E. Silva, A. P. Paiva, D. Soares, A. Labrincha, F. Castro, J. Hazard. Mater., 2005, 120(1-3), 113-118. https://doi.org/10.1016/j.jhazmat.2004.12.008
  16. F. Veglio, R. Quaresima, P. Fornari, S. Ubaldini, Waste Manag., 2003, 23(3), 245-252. https://doi.org/10.1016/S0956-053X(02)00157-5
  17. E. Haccuria, P. Ning, H. Cao, P. Venkatesan, W. Jin, Y. Yang, Z. Sun, J. Clean. Prod., 2017, 152, 150-156. https://doi.org/10.1016/j.jclepro.2017.03.112
  18. T. C. Chen, R. Priambodo, R. L. Huang, Y. H. Huang, J. Waste Manag., 2013, 2013, 1-6.
  19. N. Ma-ud, S. Khumkoa, P. Buahombura, W. Piyawit, T. Patcharawit, S. Thongnak, T. Yingnakorn, J. Mater. Sci. Eng., 2019, 8(5), 540.
  20. B. Li, X. Wang, Y. Wei, H. Wang, M. Barati, Miner Eng., 2018, 128, 247-253. https://doi.org/10.1016/j.mineng.2018.09.007
  21. S. Silva-Martinez, S. Roy, Sep. Purif. Technol., 2013, 118, 6-12. https://doi.org/10.1016/j.seppur.2013.06.030
  22. G. W. Barton, A. C. Scott, J. Appl. Electrochem., 1992, 22(2), 104-115. https://doi.org/10.1007/BF01023811
  23. M. Mahon, S. Peng, A. Alfantazi, Can. J. Chem. Eng., 2014, 92(4), 633-642. https://doi.org/10.1002/cjce.21880
  24. L. Cifuentes, J. M. Casas, J. Simpson, Chem. Eng. Sci., 2008, 63(4), 1117-1130. https://doi.org/10.1016/j.ces.2007.11.004
  25. L. Cifuentes, J. M. Castro, G. Crisostomo, J. M. Casas, J. Simpson, Appl. Math. Model., 2007, 31(7), 1308-1320. https://doi.org/10.1016/j.apm.2006.02.016
  26. V. D. Stankovic, A. A. Wragg, J. Appl. Electrochem., 1995, 25(6), 565-573. https://doi.org/10.1007/BF00573214
  27. G. W. Barton, A. C. Scott, J. Appl. Electrochem., 1992, 22(8), 687-692. https://doi.org/10.1007/BF01027494
  28. G. W. Barton, A. C. Scott, J. Appl. Electrochem., 1994, 24(5), 377-383. https://doi.org/10.1007/BF00254148
  29. J. Allen, L. R. Bard, Electrochemical Methods: Fundamentals and Applications, John Wiley & Son, 2000.
  30. D. C. Price, W. G. Davenport, Metall. Mater. Trans. B, 1980, 11(1), 159-163.