DOI QR코드

DOI QR Code

Electrochemical Advanced Oxidation of Lamotrigine at Ti/DSA (Ta2O5-Ir2O5) and Stainless Steel Anodes

  • Meena, Vinod Kumar (Department of Chemical Engineering, Sant Longowal Institute of Engineering and Technology) ;
  • Ghatak, Himadri Roy (Department of Chemical Engineering, Sant Longowal Institute of Engineering and Technology)
  • 투고 : 2021.10.27
  • 심사 : 2022.01.23
  • 발행 : 2022.05.28

초록

The study presents kinetics of degradation and mineralization of an anti-epileptic drug Lamotrigine (LAM) in the aqueous matrix by electrochemical advanced oxidation process (EAOP) on Ti/DSA (Ta2O5-Ir2O5) and Stainless Steel (SS) anodes using sodium sulphate as supporting electrolyte. On both the anodes, kinetic behaviour was pseudo-first-order for degradation as well as mineralization of LAM. On Ti/DSA anode, maximum LAM degradation of 75.42% was observed at an associated specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 100 ppm Na2SO4 concentration. Maximum mineralization attained was 44.83% at an associated specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 50 ppm concentration of Na2SO4 with energy consumption of 2942.71 kWh/kgTOC. Under identical conditions on SS anode, a maximum of 98.92% LAM degradation was marked after a specific charge (Q) of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 100 ppm concentration of Na2SO4. Maximum LAM mineralization on SS anode was 98.53%, marked at a specific charge of 3.1 (Ah/litre) at a current density of 1.38 mA/cm2 and 75 ppm concentration of Na2SO4, with energy consumption of 1312.17 kWh/kgTOC. Higher Mineralization Current Efficiency (MCE) values were attained for EAOP on SS anode for both degradation and mineralization due to occurrence of combined electro-oxidation and electro-coagulation process in comparison to EAOP on Ti/DSA anode due to occurrence of lone electro-oxidation process.

키워드

참고문헌

  1. N.M. El-Enany , D.T. El-Sherbiny, A.A. Abdelal, F.F. Belal, J. Fluoresc., 2010, 20(2), 463-472. https://doi.org/10.1007/s10895-009-0568-6
  2. R.T. Wechsler, R. Leroy, A.V. Cott, A.E. Hammer, A. Vuong, R. Huffman, K. VanLandingham, J.A. Messenheimer, Epilepsy Res., 2014, 108(6), 1128-1136. https://doi.org/10.1016/j.eplepsyres.2014.04.009
  3. K. Beattie, G. Phadke, J. Novakovic, Chapter 6- Lamotrigine, Profiles of Drug Substances, Excipients and Related Methodology, 2012, 37, 245-285.
  4. H. Wang, D. Qian, X. Xiao, S. Gao, J. Cheng, B. He, L. Liao, J. Deng, Biosens. Bioelectron., 2017, 94, 663-670. https://doi.org/10.1016/j.bios.2017.03.055
  5. J.O. McNamara, Farmacoterapia das epilepsias, in L.L. Brunton, B.A. Chabner, B.C. knollmann, As Bases Farmacologicas da Terapeutica Goodman e Gilman, 12th Edition, McGraw Hill, Rio de Janeiro, Brazil, 2003.
  6. F. Li, Z.D. Lin, Y. Hu, W. Li, C.C. Xue, N.D. Poonit, Seizure, 2016, 37, 41-44. https://doi.org/10.1016/j.seizure.2016.02.009
  7. B. Chefetz, R. Marom, O. Salton, M. Oliferovsky, V. Mordehay, J. Ben-Ari, Y. Hadar, Environ. Pollut., 2019, 250, 546-553. https://doi.org/10.1016/j.envpol.2019.04.057
  8. R.S. Saberi, S. Shahrokhian, Bioelectrochemistry, 2012, 84, 38-43. https://doi.org/10.1016/j.bioelechem.2011.10.008
  9. C. Born, B. Bernhard, S. Dittmann, F. Seemuller, H. Grunze, J. Affect. Disord., 2009, 115(1-2), 241-245. https://doi.org/10.1016/j.jad.2008.07.020
  10. J.S. Chang, E. Moon, B. Cha, K. Ha, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2010, 34(7), 1322-1326. https://doi.org/10.1016/j.pnpbp.2010.07.020
  11. M.E.B. Calvo, O.D. Renedo, M.J.A. Martinez, Anal. Chim. Acta, 2005, 549(1-2), 74-80. https://doi.org/10.1016/j.aca.2005.06.010
  12. I. Ferrer, E.M. Thurman, Anal. Chem., 2010, 82(19), 8161-8168. https://doi.org/10.1021/ac1014645
  13. I. Ferrer, E.M. Thurman, J. Chromatogr. A, 2012, 1259, 148-157. https://doi.org/10.1016/j.chroma.2012.03.059
  14. J.H. Writer, R.C. Antweiler, I. Ferrer, J. N. Ryan, E. M. Thurman, Environ. Sci. Technol., 2013, 47(17), 9781-9790. https://doi.org/10.1021/es402158t
  15. B. Zonja, S. Perez, D. Barcelo, Environ. Sci. Technol., 2015, 50(1), 154-164. https://doi.org/10.1021/acs.est.5b03691
  16. B. Zonja, A. Delgado, J.L. Abad, S. Perez, D. Barcelo, Water Res., 2016, 100, 466-475. https://doi.org/10.1016/j.watres.2016.04.072
  17. T.P. Wood, C.D. Preez, A. Steenkamp, C. Duvenage, E.R. Rohwer, Environ. Pollut., 2017, 230, 453-462. https://doi.org/10.1016/j.envpol.2017.06.043
  18. H.R. Foster, G.A. Burton, N. Basu, E.E. Werner, Environ. Toxicol. Chem., 2010, 29(12), 2845-2850. https://doi.org/10.1002/etc.345
  19. X.S. Miao, J-J Yang, C.D. Metcalfe, Environ. Sci. Technol., 2005, 39(19), 7469-7475. https://doi.org/10.1021/es050261e
  20. O.S. Keen, I. Ferrer, E.M. Thurman, K.G. Linden, Chemosphere, 2014, 117, 316-323. https://doi.org/10.1016/j.chemosphere.2014.07.085
  21. E. Berman, E. Marom, D. Ekstein. I. Blatt, S. Eyal, Epilepsy Behav., 2016, 61,82-85. https://doi.org/10.1016/j.yebeh.2016.05.004
  22. S. Smarzewska, D. Guziejewski, A. Leniart, W. Ciesielski, J. Electrochem. Soc., 2017, 164(7), B321-B329. https://doi.org/10.1149/2.0221707jes
  23. K. Morawska, T. Poplawski, W. Ciesielski, S. Smarzewska, Bioelectrochemistry, 2020, 136, 107630. https://doi.org/10.1016/j.bioelechem.2020.107630
  24. X.Q. Wang, H.F. Wang, X. Zhang, S.Y. Yu, X.S. Huang, J.T. Zhang, C.L. Tian, S.Y. Lang, J. Clin. Neurosci., 2015. 22(6), 1005-1011. https://doi.org/10.1016/j.jocn.2015.01.016
  25. R.H. Chew, R.E. Hales, S.C. Yudofsky, What Your Patient Needs to Know about Psychiatric Medications, 2nd ed., American Psychiatric Pub. Inc, 2009, 201-205.
  26. R.B. Young, B. Chefetz, A. Liu, Y. Desyaterik, T. Borch, Environ. Sci.: Processes Impacts, 2014, 16, 848-857. https://doi.org/10.1039/C3EM00581J
  27. O.S. Keen, S. Baik, K.G. Linden, D.S. Aga, N.G. Love, Environ Sci. Technol., 2012, 46(11), 6222-6227. https://doi.org/10.1021/es300897u
  28. B.A. Wols, C.H.M. Hofman-Caris, Water Res., 2012, 46(9), 2815-2827. https://doi.org/10.1016/j.watres.2012.03.036
  29. A.F. Bollmann, W. Seitz, C. Prasse, T. Lucke, W. Schulz, T. Ternes, J. Hazard Mater., 2016, 320, 204-215. https://doi.org/10.1016/j.jhazmat.2016.08.022
  30. J. Jeong, J. Lee, Sep. Purif. Technol., 2012, 84, 35-40. https://doi.org/10.1016/j.seppur.2011.09.033
  31. H.R. Ghatak, Environ. Technol., 2014, 35(19), 2483-2492. https://doi.org/10.1080/09593330.2014.911357
  32. H.R. Ghatak, Int. J. Hydrog. Energy, 2020, 45(56), 31466-31480. https://doi.org/10.1016/j.ijhydene.2020.08.161
  33. S.W. da Silva, E.M. Navarro, M.A. Rodrigues, A.M. Bernardes, V. Perez-Herranz, J. Electroanal. Chem., 2019, 832, 112-120. https://doi.org/10.1016/j.jelechem.2018.10.049
  34. A. Hanawa, K. Asai, G. Ogata, H. Hibino, Y. Einaga, Electrochim. Acta, 2018, 271, 35-40. https://doi.org/10.1016/j.electacta.2018.03.112
  35. J. Davis, J.C. Baygents, J. Farrell, Electrochimiva Acta, 2014, 150, 68-74. https://doi.org/10.1016/j.electacta.2014.10.104
  36. J. Cai, M., Y. Pan, X. Lu, Sep. Purif. Technol., 2020, 230, 115867. https://doi.org/10.1016/j.seppur.2019.115867
  37. E. Aseman-Bashiz, H. Sayyaf, J. Mol. Liq., 2020, 300, 112285. https://doi.org/10.1016/j.molliq.2019.112285
  38. Y. Samet, L. Agengui, R. Abdelhedi, Chem. Eng. J., 2010, 161(1-2), 167-172. https://doi.org/10.1016/j.cej.2010.04.060
  39. S. You, B. Liu, Y. Gao, Y. Wang, C.Y. Tang, Y. Huang, N. Ren, Electrochim. Acta, 2016, 214, 326-335. https://doi.org/10.1016/j.electacta.2016.08.037
  40. C.A. Martinez-Huitle, M.A. Rodrigo, I. Sires, O. Scialdone, Chem. Rev., 2015, 115(24), 13362-13407. https://doi.org/10.1021/acs.chemrev.5b00361
  41. M. Hamza, R. Abdelhedi, E. Brillas, I. Sires, J. Electroanal. Chem., 2009, 627(1-2), 41-50. https://doi.org/10.1016/j.jelechem.2008.12.017
  42. E. Guinea, J.A. Garrido, R.M. Rodriguez, P.L. Cabot, C. Arias, F. Centellas, E. Brillas, Electrochim. Acta, 2010, 55(6), 2101-2115. https://doi.org/10.1016/j.electacta.2009.11.040