DOI QR코드

DOI QR Code

Effect of pH and Concentration on Electrochemical Corrosion Behavior of Aluminum Al-7075 T6 Alloy in NaCl Aqueous Environment

  • Raza, Syed Abbas (Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology) ;
  • Karim, Muhammad Ramzan Abdul (Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology) ;
  • Shehbaz, Tauheed (Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology) ;
  • Taimoor, Aqeel Ahmad (Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Main Campus) ;
  • Ali, Rashid (Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology) ;
  • Khan, Muhammad Imran (Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology)
  • Received : 2020.07.13
  • Accepted : 2021.10.25
  • Published : 2022.05.28

Abstract

In the present study, the corrosion behavior of aluminum Al-7075 tempered (T-6 condition) alloy was evaluated by immersion testing and electrochemical testing in 1.75% and 3.5% NaCl environment at acidic, neutral and basic pH. The data obtained by both immersion tests and electrochemical corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy tests) present that the corrosion rate of the alloy specimens is minimum for the pH=7 condition of the solution due to the formation of dense and well adherent thin protective oxide layer. Whereas the solutions with acidic and alkaline pH cause shift in the corrosion behavior of aluminum alloy to more active domains aggravated by the constant flux of acidic and alkaline ions (Cl- and OH-) in the media which anodically dissolve the Al matrix in comparison to precipitated intermetallic phases (cathodic in nature) formed due to T6 treatment. Consequently, the pitting behavior of the alloy, as observed by cyclic polarization tests, shifts to more active regions when pH of the solutions changes from neutral to alkaline environment due to localized dissolution of the matrix in alkaline environment that ingress by diffusion through the pores in the oxide film. Microscopic analysis also strengthens the results obtained by immersion corrosion testing and electrochemical corrosion testing as the study examines the corrosion behavior of this alloy under a systematic evaluation in marine environment.

Keywords

References

  1. E. Ghali, in Uhlig's Corros. Handb., 3rd Ed., Wiley, 2011.
  2. The Aluminium Association, Alum. Assoc. Arlington, Virginia. 2015, 31.
  3. C. S. Jawalkar, S. Kant, i-manager's J. Mater. Sci., 2015, 3(3), 33.
  4. R. T. Foley, Corrosion, 1986, 42(5), 277-288. https://doi.org/10.5006/1.3584905
  5. M. C. Santos, A. R. Machado, W. F. Sales, M. A. S. Barrozo, E. O. Ezugwu, Int. J. Adv. Manuf. Technol., 2016, 86(9), 3067-3080. https://doi.org/10.1007/s00170-016-8431-9
  6. A. Aversa, G. Marchese, A. Saboori, E. Bassini, D. Manfredi, S. Biamino, D. Ugues, P. Fino, M. Lombardi, Materials, 2019, 12(7), 1007. https://doi.org/10.3390/ma12071007
  7. G. Li, Y. Liang, F. Chen, Y. Han, L. Sun, Metals, 2019, 9(4), 428. https://doi.org/10.3390/met9040428
  8. A. D. Isadare, B. Aremo, M. O. Adeoye, O. J. Olawale, M. D. Shittu, Mater. Res., 2013, 16(1), 190-194. https://doi.org/10.1590/S1516-14392012005000167
  9. V. Guillaumin, G. Mankowski, Corros Sci, 1998, 41(3), 421-438. https://doi.org/10.1016/S0010-938X(98)00116-4
  10. M. Shao, Y. Fu, R. Hu, C. Lin, Mater. Sci. Eng. A., 2003, 344(1-2), 323-327. https://doi.org/10.1016/S0921-5093(02)00445-8
  11. P. Deepa, R. Padmalatha, Arab. J. Chem., 2017, 10, S2234-S2244. https://doi.org/10.1016/j.arabjc.2013.07.059
  12. A. M. Abdel-Gaber, E. Khamis, H. Abo-ElDahab, S. Adeel, Mater. Chem. Phys., 2008, 109(2-3), 297-305. https://doi.org/10.1016/j.matchemphys.2007.11.038
  13. H. Bohni, H. H. Uhlig, J. Electrochem. Soc., 1969, 116(7), 906-910. https://doi.org/10.1149/1.2412167
  14. B. Zaid, N. Maddache, D. Saidi, N. Souami, N. Bacha, A. Si Ahmed, J. Alloys Compd., 2015, 629, 188-196. https://doi.org/10.1016/j.jallcom.2015.01.003
  15. J. T. Staley, R. H. Brown, R. Schmidt, Metall. Trans., 1972, 3(1), 191-199. https://doi.org/10.1007/BF02680598
  16. A. S. Bhui, G. Singh, 2017, 35(1539020), 1-35.
  17. F. Ostermann, Metall. Trans., 1971, 2(10), 2897-2902. https://doi.org/10.1007/BF02813269
  18. H. A. E. Asghari, 2010, 40(3), 631-637.
  19. B. Obert, K. Ngo, J. Hashemi, S. Ekwaro-Osire, T. P. Sivam, ASME International Mechanical Engineering Congress and Exposition., 1999, 0622, 119-133.
  20. S. Maitra, G. C. English, Metall. Trans. A., 1981, 12(3), 535-541.
  21. S. S. A. Rehim, H. H. Hassan, M. A. Amin, Appl. Surf. Sci., 2002, 187(3-4), 279-290. https://doi.org/10.1016/S0169-4332(01)01042-X
  22. F. Mansfeld, S. Lin, S. Kim, H. Shih, Corros. Mater., 1988, 39(11), 487-492. https://doi.org/10.1002/maco.19880391102
  23. R. Ambat, E. S. Dwarakadasa, J. Appl. Electrochem., 1994, 24(9), 911-916. https://doi.org/10.1007/BF00348781
  24. L. I. Feng, P. Z. Wei, L. C. Xing, J. Z. Qiang, W. C. Jing, Z. Z. Qiao, Trans. Nonferrous Met. Soc. China, 2008, 18(4), 755-762. https://doi.org/10.1016/S1003-6326(08)60130-2
  25. G. Silva, B. Rivolta, R. Gerosa, U. Derudi, J. Mater. Eng. Perform., 2013, 22(1), 210-214. https://doi.org/10.1007/s11665-012-0221-4
  26. N. Birbilis, M. K. Cavanaugh, R. G. Buchheit, Corros Sci, 2006, 48(12), 4202-4215. https://doi.org/10.1016/j.corsci.2006.02.007
  27. F. Andreatta, H. Terryn, J. H. W. De Wit, Electrochim. Acta., 2004, 49(17-18), 2851-2862. https://doi.org/10.1016/j.electacta.2004.01.046
  28. B. Zaid, D. Saidi, A. Benzaid, S. Hadji, Corros Sci, 2008, 50(7), 1841-1847. https://doi.org/10.1016/j.corsci.2008.03.006
  29. K. Nisancioglu, H. Holtan, Corros Sci, 1979, 19(8), 537-552. https://doi.org/10.1016/S0010-938X(79)80136-5
  30. M. Serdechnova, P. Volovitch, F. Brisset, K. Ogle, Electrochim. Acta., 2014, 124, 9-16. https://doi.org/10.1016/j.electacta.2013.09.145
  31. I. Boukerche, S. Djerad, L. Benmansour, L. Tifouti, K. Saleh, Corros Sci, 2014, 78, 343-352. https://doi.org/10.1016/j.corsci.2013.10.019
  32. S. I. Pyun, S. M. Moon, S. H. Ahn, S. S. Kim, Corros Sci, 1999, 41(4), 653-667. https://doi.org/10.1016/S0010-938X(98)00132-2
  33. S. M. Moon, S. I. Pyun, Corros Sci, 1997, 39(2), 399-408. https://doi.org/10.1016/S0010-938X(97)83354-9
  34. C. M. Brett, Corros Sci, 1992, 33(2), 203-210. https://doi.org/10.1016/0010-938X(92)90145-S
  35. W. S. Tait, Corrosion, 1979, 35(7), 296-300. https://doi.org/10.5006/0010-9312-35.7.296
  36. A. Younis, M. M. B. El-Sabbah, R. Holze, J. Solid State Electrochem., 2012, 16(3), 1033-1040. https://doi.org/10.1007/s10008-011-1476-7
  37. E. E. Oguzie, Corros Sci, 2007, 49(3), 1527-1539. https://doi.org/10.1016/j.corsci.2006.08.009
  38. R. T. Foley, T. H. Nguyen, J. Electrochem. Soc., 1982, 129(3), 464-467. https://doi.org/10.1149/1.2123881
  39. P. D. Reena Kumari, J. Nayak, A. Nityananda Shetty, Arab. J. Chem., 2016, 9, S1144-S1154. https://doi.org/10.1016/j.arabjc.2011.12.003
  40. J. Wysocka, S. Krakowiak, J. Ryl, K. Darowicki, J. Electroanal. Chem., 2016, 778, 126-136. https://doi.org/10.1016/j.jelechem.2016.08.028
  41. J. B. Wang, J. M. Wang, H. B. Shao, J. Q. Zhang, C. N. Cao, J. Appl. Electrochem., 2007, 37(6), 753-758. https://doi.org/10.1007/s10800-007-9310-8
  42. M. V. Rendon, J. A. Calderon, P. Fernandez, Quim. Nova., 2011, 34(7), 1163-1166. https://doi.org/10.1590/S0100-40422011000700011
  43. F. J. Martin, G. T. Cheek, W. E. O'Grady, P. M. Natishan, Corros Sci, 2005, 47(12), 3187-3201. https://doi.org/10.1016/j.corsci.2005.05.058
  44. P. M. Natishan, W. E. O'Grady, J. Electrochem. Soc., 2014, 161(9), C421. https://doi.org/10.1149/2.1011409jes
  45. R. G. Buchheit, R. K. Boger, M. C. Carroll, R. M. Leard, C. Paglia, J. L. Searles, Jom., 2001, 53(7), 29-33. https://doi.org/10.1007/s11837-001-0084-x
  46. S. Sun, Q. Zheng, D. Li, J. Wen, Corros Sci, 2009, 51(4), 719-727. https://doi.org/10.1016/j.corsci.2009.01.016
  47. H. Lee, F. Xu, C. S. Jeffcoate, H. S. Isaacs, Electrochem. Solid-State Lett., 2001, 4(10).
  48. G. S. Frankel, J. Electrochem. Soc., 1998, 145(6), 2186-2198. https://doi.org/10.1149/1.1838615
  49. S. Il Pyun, S. M. Moon, J. Solid State Electrochem., 2000, 4(5), 267-272. https://doi.org/10.1007/s100080050203
  50. K. C. Emregul, A. A. Aksut, Corros Sci, 2000, 42(12), 2051-2067. https://doi.org/10.1016/S0010-938X(00)00055-X
  51. K. K. Lee, K. B. Kim, Corros Sci, 2001, 43(3), 561-575. https://doi.org/10.1016/S0010-938X(00)00060-3
  52. P. R. Roberge, Corrosion Engineering: Principles and Practice, McGraw-HILL, 2008.
  53. Q. Meng, G. S. Frankel, J. Electrochem. Soc., 2004, 151(5), B271. https://doi.org/10.1149/1.1695385
  54. Y. Liu, S. Tang, G. Liu, Y. Sun, J. Hu, Int J Electrochem Sci, 2016, 11, 8530-8545. https://doi.org/10.20964/2016.10.18
  55. A. A. Mazhar, S. T. Arab, E. A. Noor, J. Appl. Electrochem., 2001, 31(10), 1131-1140. https://doi.org/10.1023/A:1012039804089
  56. Y. Zheng, B. Luo, Z. Bai, J. Wang, Y. Yin, Metals, 2017, 7(10), 387. https://doi.org/10.3390/met7100387
  57. A. Boag, A. E. Hughes, A. M. Glenn, T. H. Muster, D. McCulloch, Corros Sci, 2011, 53(1), 17-26. https://doi.org/10.1016/j.corsci.2010.09.009
  58. P. Gimenez, J. J. Rameau, M. C. Reboul, Corrosion, 1981, 37(12), 673-682. https://doi.org/10.5006/1.3577557
  59. L. N. Zhang, J. A. Szpunar, J. X. Dong, O. A. Ojo, X. Wang, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2018, 49(3), 919-925. https://doi.org/10.1007/s11663-018-1227-6