DOI QR코드

DOI QR Code

Studying Thermochemical Conversion of Sm2O3 to SmCl3 using AlCl3 in LiCl-KCl Eutectic Melt

  • Samanta, Nibedita (Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research) ;
  • Chandra, Manish (Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research) ;
  • Maji, S. (Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research) ;
  • Venkatesh, P. (Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research) ;
  • Annapoorani, S. (Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research) ;
  • Jain, Ashish (Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research)
  • 투고 : 2021.09.27
  • 심사 : 2022.01.03
  • 발행 : 2022.05.28

초록

In this report the thermochemical conversion of Sm2O3 to SmCl3 using AlCl3 in LiCl-KCl melt at 773 K is discussed. The final product was a mixture of SmCl3, Al2O3, unreacted Sm2O3 and AlCl3 in the chloride melt. The electrochemical attributes of the mixture was analyzed with cyclic voltammetry (CV) and square wave voltammetry (SWV). The crystallographic phases of the mixture were studied with X-ray diffraction (XRD) technique. The major chemical conversion was optimized by varying the effective parameters, such as concentrations of AlCl3, duration of reaction and the amount of LiCl-KCl salt. The extent of conversion and qualitative assessment of efficiency of the present protocol were evaluated with fluorescence spectroscopy, UV-Vis spectrophotometry and inductively coupled plasma atomic emission spectroscopy (ICP-AES) studies of the mixture. Thus, a critical assessment of the thermochemical conversion efficiency was accomplished by analysing the amount of SmCl3 in LiCl-KCl melt. In the process, a conversion efficiency of 95% was achieved by doubling the stoichiometric requirement of AlCl3 in 50 g of LiCl-KCl salt. The conversion reaction was found to be very fast as the reaction reached equilibrium in 15 min.

키워드

과제정보

The authors would like to thank Mrs. A. Lali, MC&MFCG, IGCAR for valuable discussion.

참고문헌

  1. G.L. Hofman, L.C. Walters, T.H. Bauer, Prog. Nucl. Energy., 1997, 31(1-2), 83-110. https://doi.org/10.1016/0149-1970(96)00005-4
  2. M.A. Williamson, J.L. Willit, Nucl. Eng. Technol., 2011, 43(4), 329-334. https://doi.org/10.5516/NET.2011.43.4.329
  3. T. Koyama, M. Iizuka, Y. Shoji, R. Fujita, H. Tanaka, T. Kobayashiz, M. Tokiwai, J. Nucl. Sci.Technol., 1997, 34(4), 384-393. https://doi.org/10.1080/18811248.1997.9733678
  4. C.M.Walter, G.H. Golden, N.J. Olson, U-Pu-Zr Metal Alloy: A Potential Fuel for LMFBRs, Argonne National Laboratory, ANL-76-28, 1975.
  5. Y.I. Chang, Nucl. Technol., 1989, 88(2), 129-138. https://doi.org/10.13182/NT88-129
  6. Y.I. Chang, Nucl. Eng. Technol., 2007, 39(3), 161-170. https://doi.org/10.5516/NET.2007.39.3.161
  7. J.P. Ackerman, Ind. Eng. Chem. Res., 1991, 30(1), 141-145. https://doi.org/10.1021/ie00049a022
  8. J.E. Battles, W.E. Miller, E.C. Gay, Pyrometallurgical processing of Integral fast reactor metal fuels, Argonne National Laboratory, ANL/CP-70796, 1991.
  9. C.E. Till, Y.I. Chang, Plentiful Energy: The Story of the Integral Fast Reactor, CreateSpace, 2011.
  10. M.R. Shaltry, P.K. Tripathy, T.S. Yoo, G.L. Fredrickson, J. Electroanal. Chem., 2021, 899, 115689. https://doi.org/10.1016/j.jelechem.2021.115689
  11. S. Sohn, J. Park, P.H. Kim, I.S. Hwang, Procedia Chem., 2016, 21, 401-408. https://doi.org/10.1016/j.proche.2016.10.056
  12. A.V. Novoselova, V.V. Smolenski, A.L. Bovet, Russ. Metall. (Met.), 2021, 2021(2), 165-169. https://doi.org/10.1134/S003602952102018X
  13. S.V. Perumal, B.P. Reddy, G. Ravishankar, K. Nagarajan, Radiochim. Acta, 2015, 103(4), 287-292. https://doi.org/10.1515/ract-2014-2288
  14. J.P. Ackerman, T.T. Johnson, L.S.H. Chow, E.L. Carls, W.H. Hannum, J.J. Laidler, Prog. Nucl. Energy, 1997, 31(1-2), 141-154. https://doi.org/10.1016/0149-1970(96)00008-X
  15. T.B. Joseph, N. Sanil, K.S. Mohandas, K. Nagarajan, J. Electrochem. Soc., 2015, 162(6), E51. https://doi.org/10.1149/2.0521506jes
  16. Y. Sakamura, M. Iizuka, Electrochim. Acta, 2016, 189, 74-82. https://doi.org/10.1016/j.electacta.2015.12.086
  17. C.E. Stevenson, The EBR-II Fuel Cycle Story, American Nuclear Society, 1987.
  18. J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, E.L. Carls, Prog. Nucl. Energy, 1997, 31(1-2), 131-140. https://doi.org/10.1016/0149-1970(96)00007-8
  19. A.L. Nichols, D.L. Aldama, M. Verpelli, Handbook of Nuclear Data for safeguards, International Atomic Energy Agency, 2007.
  20. K. Liu, Y.L. Liu, L.Y. Yuan, H. He, Z.Y. Yang, X.L. Zhao, Z.F. Chai, W.Q. Shei, Electrochim. Acta, 2014, 129, 401-409. https://doi.org/10.1016/j.electacta.2014.02.136
  21. M. Martincic, C. Frontera, E. Pach, B. Ballesteros, G. Tobias, Polyhedron., 2016, 116, 116-121. https://doi.org/10.1016/j.poly.2016.03.045
  22. G.N. Papatheodorou, G.H. Kucera, Inorg. Chem., 1979, 18(2), 385-389. https://doi.org/10.1021/ic50192a038
  23. Y. Liu, K. Liu, L. Luo, L. Yuan, Z. Chai, W. Shi, Electrochim. Acta, 2018, 275, 100- 109. https://doi.org/10.1016/j.electacta.2018.04.140
  24. K. Liu, Y.L. Liu, L.Y. Yuan, X.L. Zhao, Z.F. Chai, W.Q. Shei, Electrochim. Acta, 2013, 109, 732-740. https://doi.org/10.1016/j.electacta.2013.07.084
  25. L.Wang, Y.L. Liu, K. Liu, S.L. Tang, L.Y. Yuan, L.L. Su, Z.F. Chai, W.Q. Shi, Electrochim. Acta, 2014, 147, 385-391. https://doi.org/10.1016/j.electacta.2014.08.113
  26. H. Tang, Y.D. Yan, W. Han, M.L. Zhang, X. Liu, Y.L. Xue, W. Han, Z.J. Zhang, Electrochim. Acta, 2013, 88, 457-462. https://doi.org/10.1016/j.electacta.2012.10.045
  27. Y.D. Yan, H. Tang, M.L. Zhang, Y. Xue, W. Han, D.X. Cao, Z.J. Zhang, Electrochim. Acta, 2012, 59, 531-537. https://doi.org/10.1016/j.electacta.2011.11.007
  28. Y.D. Yan, X. Li, M.L. Zhang, Y. Xue, H. Tang, W. Han, Z.J. Zhang, J. Electrochem. Soc., 2012, 159(11), D649. https://doi.org/10.1149/2.049211jes
  29. Y. Xue, X. Yang, Y. Yan, M. Zhang, J. Debin, L. Enyu, W. Han, Acta Metall. Sin., 2016, 52(7), 883-889.
  30. Y.L. Liu, Y.D. Yan, W. Han, M.L. Zhang, L.Y. Yuan, K. Liu, G.A. Ye, H. He, Z.F. Chai, W.Q. Shi, Electrochim. Acta, 2013, 114, 180-188. https://doi.org/10.1016/j.electacta.2013.09.154
  31. Y.L. Liu, G.A. Ye, L.Y. Yuan, K. Liu, Y.X. Feng, Z.J. Li, Z.F. Chai, WQ. Shi, Electrochim. Acta, 2015, 158, 277-286. https://doi.org/10.1016/j.electacta.2015.01.128
  32. Y. Sakamura, T. Inoue, T. Iwai, H. Moriyama, J. Nucl. Mater., 2005, 340(1), 39-51. https://doi.org/10.1016/j.jnucmat.2004.11.002
  33. Y.L. Liu, L.X. Luo, N. Liu, B.L. Yao, K. Liu, L.Y. Yuan, Z.F. Chai, W.Q. Shi, J. Nucl. Mater., 2018, 508, 68-73.
  34. Y.C. Liu, Y.L. Liu, Y. Zhao, Z. Liu, T. Zhou, Q. Zou, X. Zeng, Y.K. Zhong, M. Li, Z.X. Sun, W.Q. Shi, J. Nucl. Mater., 2020, 532, 152049. https://doi.org/10.1016/j.jnucmat.2020.152049
  35. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, MA. Van Ende, Calphad, 2016, 54, 35-53. https://doi.org/10.1016/j.calphad.2016.05.002
  36. A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd Ed, John Wiley and Sons, Inc., 2001.
  37. Y.L. Liu, L.Y. Yuan, K. Liu, G.A. Ye, M.L. Zhang, H. He, H.B. Tang, R.S. Lin, Z.F. Chai, W.Q. Shi, Electrochim. Acta, 2014, 120, 369-378. https://doi.org/10.1016/j.electacta.2013.12.081
  38. G. Cordoba, C. Caravaca, J. Electroanal. Chem., 2004, 572(1), 145-151. https://doi.org/10.1016/j.jelechem.2004.05.029
  39. Y. Castrillejo, P. Fernandez, J. Medinab, P. Hernandezc, E. Barrado, Electrochim. Acta, 2011, 56(24), 8638-8644. https://doi.org/10.1016/j.electacta.2011.07.059
  40. Southampton Electrochemistry Group, Instrumental Methods in Electrochemistry, Ellis Horwood Ltd., 1985.
  41. J.G. Osteryoung, R.A. Osteryoung, Anal. Chem., 1985, 57(1), 101-110. https://doi.org/10.1021/ac00279a004
  42. L. Ramaley, M.S. Kraus, Anal. Chem. 1969, 41(11), 1362-1365. https://doi.org/10.1021/ac60280a005
  43. P. Chamelot, B. Lafage, P. Taxil, Electrochim. Acta, 1997, 43(5-6), 607-616. https://doi.org/10.1016/S0013-4686(97)00102-3
  44. H.R. Shih, Y.S. Chang, Materials, 2017, 10(7), 779. https://doi.org/10.3390/ma10070779
  45. H.J. Im, Y.K. Jeong, Y.H. Cho, J.G. Kang, K. Song, Electrochemistry, 2009, 77(8), 670-672. https://doi.org/10.5796/electrochemistry.77.670
  46. Y. Feng, Y. Dai, Y. Liu, B. Yang, J. Vac. Sci. Technol., 2009, 29(3), 336-339. https://doi.org/10.3969/j.issn.1672-7126.2009.03.24