DOI QR코드

DOI QR Code

A New Perspective on the Advanced Microblade Cutting Method for Reliable Adhesion Measurement of Composite Electrodes

  • Song, Jihun (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Shin, Dong Ok (Intelligent Sensors Research Section, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Byun, Seoungwoo (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Roh, Youngjoon (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Bak, Cheol (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Song, Juhye (Intelligent Sensors Research Section, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Choi, Jaecheol (Intelligent Sensors Research Section, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Lee, Hongkyung (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Kwon, Tae-Soon (Railroad Safety Research Division, Korea Rairoad Research Institute (KRRI)) ;
  • Lee, Young-Gi (Intelligent Sensors Research Section, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Ryou, Myung-Hyun (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Lee, Yong Min (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • 투고 : 2021.10.06
  • 심사 : 2021.10.25
  • 발행 : 2022.05.28

초록

The microblade cutting method, so-called SAICAS, is widely used to quantify the adhesion of battery composite electrodes at different depths. However, as the electrode thickness or loading increases, the reliability of adhesion values measured by the conventional method is being called into question more frequently. Thus, herein, a few underestimated parameters, such as friction, deformation energy, side-area effect, and actual peeing area, are carefully revisited with ultrathick composite electrodes of 135 ㎛ (6 mAh cm-2). Among them, the existence of side areas and the change in actual peeling area are found to have a significant influence on measured horizontal forces. Thus, especially for ultrahigh electrodes, we can devise a new SAICAS measurement standard: 1) the side-area should be precut and 2) the same actual peeling area must be secured for obtaining reliable adhesion at different depths. This guideline will practically help design more robust composite electrodes for high-energy-density batteries.

키워드

과제정보

This work was supported by an Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean government [21ZB1200, Development of ICT Materials, Components, and Equipment Technologies], the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A4A4079810) and the grant from R&D Program of the Korea Railroad Research Institute (KRRI), Republic of Korea. We are also very grateful for the support from the DGIST Supercomputing and Bigdata Center.

참고문헌

  1. T. Mochizuki, S. Aoki, T. Horiba, M. S. Dobrick, Z. J. Han, S. Fukuyama, H. Oji, S. Yasuno, S. Komaba, ACS Sustainable Chem. Eng., 2017, 5(7), 6343-6355. https://doi.org/10.1021/acssuschemeng.7b01798
  2. M. Ling, J. Qiu, S. Li, C. Yan, M. J. Kiefel, G. Liu, S. Zhang, Nano Lett., 2015, 15(7), 4440-4447. https://doi.org/10.1021/acs.nanolett.5b00795
  3. L. Ma, J. Meng, Y. Pan, Y. J. Cheng, Q. Ji, X. Zuo, X. Wang, J. Zhu, Y. Xia, Langmuir, 2020, 36(8), 2003-2011. https://doi.org/10.1021/acs.langmuir.9b03497
  4. D. W. Choi, K. L. Choy, Mater. Des., 2020, 191, 108669. https://doi.org/10.1016/j.matdes.2020.108669
  5. S. Gao, F. S, A. Brady, Y. Pan, A. Erwin, D. Yang, V. Tsukruk, A. G. Stack, T. Saito, H. Yang, P. F. Cao, Nano Energy, 2020, 73, 104804. https://doi.org/10.1016/j.nanoen.2020.104804
  6. M. Zheng, X. Cai, Y. Tan, W. Wang, D. Wang, H. Fei, P. Saha, G. Wang, Chem. Eng. J., 2020, 389, 124404. https://doi.org/10.1016/j.cej.2020.124404
  7. Q. H. Nguyen, J. S. Choi, Y. C. Lee, I. T. Kim, J. Hur, J. Ind. Eng. Chem., 2019, 69, 116-126. https://doi.org/10.1016/j.jiec.2018.09.015
  8. S. Y. Lee, Y. Choi, S. H. Kwon, J. S. Bae, E. D. Jeong, J. Ind. Eng. Chem., 2019, 74, 216-222. https://doi.org/10.1016/j.jiec.2019.03.009
  9. M. Muller, L. Pfaffmann, S. Jaiser, M. Baunach, V.Trouillet, F. Scheiba, P. Scharfer, W. Schabel, W. Bauer, J. Power Sources, 2017, 340, 1-5. https://doi.org/10.1016/j.jpowsour.2016.11.051
  10. Y. Su, K. Zhou, Y. Yuan, W. Liu, Y. Deng, IOP Conf. Ser.: Mater. Sci. Eng., 2020, 793(1), 012025. https://doi.org/10.1088/1757-899X/793/1/012025
  11. J. Landesfeind, A. Eldiven, H. A. Gasteiger, J. Electrochem. Soc., 2018, 165(5), A1122. https://doi.org/10.1149/2.0971805jes
  12. P. Harte, M. Evertz, T. Schwieter, M. Diehl, M. Winter, S. Nowak, Anal. Bioanal. Chem. 2019, 411(3), 581-589. https://doi.org/10.1007/s00216-018-1351-9
  13. A. Danczak, L. Klemettinen, M. Kurhila, P. Taskinen, D. Lindberg, A. Jokilaaksom, Batteries, 2020, 6(1), 16. https://doi.org/10.3390/batteries6010016
  14. T. Tirronen, D. Sukhomlinov, H. O'Brien, P. Taskinen, M. Lundstrom, J. Cleaner Prod., 2017, 168, 399-409. https://doi.org/10.1016/j.jclepro.2017.09.051
  15. T. Schwieters, M. Evertz, M. Mense, M. Winter,S. Nowak, J. Power Sources, 2017, 356, 47-55. https://doi.org/10.1016/j.jpowsour.2017.04.078
  16. S. F. Durrant, J. Anal. At. Spectrom., 1999, 14(9), 1385-1403. https://doi.org/10.1039/a901765h
  17. D. Gunther, S. E. Jackson and H. P. Longerich, Spectrochim Acta Part B At Spectrosc, 1999, 54(3-4), 381-409. https://doi.org/10.1016/S0584-8547(99)00011-7
  18. J. A. C. Broekaert, J. Anal. Chem., 2000, 368(1), 15-22.
  19. K. Niemax, Fresenius J. Anal. Chem., 2001, 370(4), 332-340. https://doi.org/10.1007/s002160100796
  20. R. E. Russo, X. Mao, H. Liu, J. Gonzalez, S. S. Mao, Talanta, 2002, 57(3), 425-451 https://doi.org/10.1016/S0039-9140(02)00053-X
  21. D. Gunther, I. Horn and B. Hattendorf, Fresenius J Anal Chem, 2000, 368(1), 4-14. https://doi.org/10.1007/s002160000495
  22. J. S. Becker, J. Anal. At. Spectrom., 2002, 17(9), 1172-1185. https://doi.org/10.1039/B203028B
  23. J. S. Becker, Spectrochim. Acta B, 2002, 57(12), 1805-1820. https://doi.org/10.1016/S0584-8547(02)00213-6
  24. W. K. Asbeck, The measurement of adhesion in absolute units by knife-cutting methods: the hesiometer, presented at The Eleventh FATIPEC Congress, Brussels Congress Book, 1972, 78-87.
  25. 西山逸雄, 高橋健造, 色材協会誌, 1989, 62(12), 744-748
  26. J. Choi, M. H. Ryou, B. Son, J. Song, J. K. Park, K. Y. Cho, Y. M. Lee, J. Power Sources, 2014, 252, 138-143. https://doi.org/10.1016/j.jpowsour.2013.12.015
  27. B. Son, M. H. Ryou, J. Choi, T. Lee, H. Kyun Yu, J. H. Kim, Y. M. Lee, A.C.S. Appl. Mater. Interfaces, 2014, 6(1), 526-531. https://doi.org/10.1021/am404580f
  28. D. Song, S. H. Lee, K. Kim, M. H. Ryou, W. H. Park, Y. M. Lee, Appl. Chem. Eng., 2015, 26(6), 674-680. https://doi.org/10.14478/ACE.2015.1095
  29. J. Choi, K. Kim, J. Jeong, K. Y. Cho, M. H. Ryou, Y. M. Lee, A.C.S. Appl. Mater. Interfaces, 2015, 7(27), 14851-14858. https://doi.org/10.1021/acsami.5b03364
  30. I. Cho, S. Gong, D Song, Y. G. Lee, M. H. Ryou, Y. M. Lee, Sci. Rep., 2016, 6(1), 1-9. https://doi.org/10.1038/s41598-016-0001-8
  31. K. Kim, S. Byun, I. Cho, M. H. Ryou, Y. M. Lee, A.C.S. Appl. Mater. Interfaces, 2016, 8(36), 23688-23695. https://doi.org/10.1021/acsami.6b06344
  32. H. Jeon, S. Y. Jin, W. H. Park, H. Lee, H. T. Kim, M. H. Ryou and Y. M. Lee, Electrochim. Acta, 2016, 212, 649-656. https://doi.org/10.1016/j.electacta.2016.06.172
  33. S. W. Kim, M. H. Ryou, Y. M. Lee, K. Y. Cho, J. Alloys Compd., 2016, 675, 341-347. https://doi.org/10.1016/j.jallcom.2016.03.135
  34. J. Oh, D. Jin, K. Kim, D. Song, Y. M. Lee, M. H. Ryou, A.C.S. Omega, 2017, 2(11), 8438-8444. https://doi.org/10.1021/acsomega.7b01365
  35. H. Jeon, J. Choi, M. H. Ryou, Y. M. Lee, A.C.S. Omega, 2017, 2(5), 2159-2164. https://doi.org/10.1021/acsomega.7b00493
  36. H. Jeon, I. Cho, H. Jo, K. Kim, M. H. Ryou, Y. M. Lee, Rsc Adv., 2017, 7(57), 35681-35686. https://doi.org/10.1039/C7RA04598K
  37. M. Latifatu, C. Y. Bon, K. S. Lee, L. Hamenu, Y. I. Kim, Y. J. Lee, Y. M. Lee, J. M. Ko, J. Electrochem. Sci. Technol., 2018, 9(4), 330-338. https://doi.org/10.5229/JECST.2018.9.4.330
  38. H. Lee, H. K. Jeon, S. Gong, M. H. Ryou, Y. M. Lee, Appl. Surf. Sci., 2018, 427, 139-146. https://doi.org/10.1016/j.apsusc.2017.07.276
  39. Y. Roh, S. Byun, M. H. Ryou, Y. M. Lee, J. Korean Electrochem. Soc., 2018, 21(3), 47-54. https://doi.org/10.5229/JKES.2018.21.3.47
  40. S. Byun, Y. Roh, D. Jin, M. H. Ryou, Y. M Lee, J. Korean Electrochem. Soc., 2018, 21(2), 28-38. https://doi.org/10.5229/JKES.2018.21.2.28
  41. K. Kim, S. Byun, J. Choi, S. Hong, M. H. Ryou, Y. M. Lee, ChemPhysChem., 2018, 19(13), 1627-1634. https://doi.org/10.1002/cphc.201800072
  42. S. Byun, J. Choi, Y. Roh, D. Song, M. H. Ryou,Y. M. Lee, Electrochim. Acta, 2020, 332, 135471. https://doi.org/10.1016/j.electacta.2019.135471
  43. J. Kim, S. Byun, S. Lee, J. Ryu, S. Cho, C. Oh, H. Kim, K. No, S. Ryu, Y. M. Lee, S. Hong, Nano Energy, 2020, 75, 104992. https://doi.org/10.1016/j.nanoen.2020.104992
  44. D. Jin, H. S. Bae, J. Hong, S. Kim, J. Oh, K. Kim, T. Jo, Y. M. Lee, Y. G. Lee, M. H. Ryou, Electrochim. Acta, 2020, 364, 136878. https://doi.org/10.1016/j.electacta.2020.136878
  45. S. Byun, Y. Roh, K. M. Kim, M. H Ryou, Y. M. Lee, Appl. Mater. Today, 2020, 21, 100809. https://doi.org/10.1016/j.apmt.2020.100809
  46. S. Byun, J-H Yu, J. Choi, S. Yun, Y. Roh, C. B. Dzakpasu, S. H. Park, J. G. Oh, B. K. Hong, Y. M. Lee, J. Power Sources, 2020, 455, 227928. https://doi.org/10.1016/j.jpowsour.2020.227928
  47. D. Jin, Y. Roh, T. Jo, D. O. Shin, J. Song, J. Y. Kim, Y. G. Lee, H. Lee, M. H. Ryou, Y. M. Lee, Chem. Eng. J., 2021, 406, 126834. https://doi.org/10.1016/j.cej.2020.126834