DOI QR코드

DOI QR Code

A Safety IO Throttling Method Inducting Differential End of Life to Improving the Reliability of Big Data Maintenance in the SSD based RAID

SSD기반 RAID 시스템에서 빅데이터 유지 보수의 신뢰성을 향상시키기 위한 차등 수명 마감을 유도하는 안전한 IO 조절 기법

  • Received : 2022.03.15
  • Accepted : 2022.05.20
  • Published : 2022.05.28

Abstract

Recently, data production has seen explosive growth, and the storage systems to store these big data safely and quickly is evolving in various ways. A typical configuration of storage systems is the use of SSDs with fast data processing speed as a RAID group that can maintain reliable data. However, since NAND flash memory, which composes SSD, has the feature that deterioration if writes more than a certain number of times are repeated, can increase the likelihood of simultaneous failure on multiple SSDs in a RAID group. And this can result in serious reliability problems that data cannot be recovered. Thus, in order to solve this problem, we propose a method of throttling IOs so that each SSD within a RAID group leads to a different life-end. The technique proposed in this paper utilizes SMART to control the state of each SSD and the number of IOs allocated according to the data pattern used step by step. In addition, this method has the advantage of preventing large amounts of concurrency defects in RAID because it induces differential lifetime finishes of SSDs.

최근 데이터의 생산량은 폭발적인 증가를 이루어왔고, 빅데이터를 안전하고 빠르게 저장하기 위한 대용량 저장 시스템이 다양하게 발전하고 있다. 저장시스템의 대표적인 구성은 빠른 데이터 처리속도를 가지고 있는 SSD를 신뢰성 높은 데이터 유지 보수가 가능한 RAID 그룹으로 사용하는 것이다. 그러나 SSD를 구성하는 낸드 플래시 메모리는 특정 횟수 이상 쓰기를 반복할 경우 열화가 발생하는 특징이 있기 때문에 RAID 그룹의 여러 SSD에서 동시에 불량이 발생할 가능성을 증가시킬 수 있다. 그리고 이러한 동시성 불량은 데이터를 복구할 수 없는 심각한 신뢰성의 문제를 초래할 수 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 RAID 그룹 내에서 각 SSD가 차등으로 수명 마감이 유도되도록 IO를 조절하는 방법을 제안한다. 본 논문에서 제안하는 기법은 SMART를 활용하여 각 SSD의 상태와 사용된 데이터 패턴에 따라 할당되는 IO 횟수를 단계별로 조절한다. 그리고 이 방법은 SSD의 차등 수명마감을 유도하기 때문에 RAID에서 대량의 동시성 불량이 발생하는 것을 방지하는 장점이 있다.

Keywords

Acknowledgement

This paper was supported by 2022 Baekseok University Research Fund

References

  1. C. Fan, D. Yan, F. Xiao & et al. (2021). Advanced data analytics for enhancing building performances: From data-driven to big data-driven approaches. Springer, 14, 3-24. DOI: https://doi.org/10.1007/s12273-020-0723-1
  2. M. naeem, T. Jamal, J. Martinez & et al. (2022). Trends and Future Perspective Challenges in Big Data, Advances in Intelligent Data Analysis and Applications, 253, 309-325.
  3. H. J. Hadi, N. Musthaq & I. U. Khan. (2021). SSD Forensic: Evidence Generation and Forensic Research on Solid State Drives Using Trim Analysis. 2021 International Conference on Cyber Warfare and Security, 51-56. DOI: 10.1109/ICCWS53234.2021.9702989
  4. K. Han & D. Shin. (2021). Remap-based Inter-Partition Copy for Arrayed Solid-State Drives. IEEE Transactions on Computers, 1-1. DOI: 10.1109/TC.2021.3099694
  5. P. Jin, X. Zhuang, Y. Luo & M. Lu. (2021). Exploring Index Structures for Zoned Namespaces SSDs, IEEE International Conference on Big Data (Big Data), 5919-5922. DOI: 10.1109/BigData52589.2021.9671606
  6. H. Guo & et al. (2021). Lazy-WL: A Wear-aware Load Balanced Data Redistribution Method for Efficient SSD Array Scaling. IEEE International Conference on Cluster Computing, 157-168. DOI: 10.1109/BigData52589.2021.9671606
  7. S. Byun. (2019). Modeling and simulation of the redundant array of inexpensive/independent disks storage for internet of things monitoring servers. International Journal of Electrical Engineering & Education, 156-157.
  8. NetApp. (2018). RAID-DP: NetApp implementation of double parity RAID for data protection.
  9. J. Y. Lee, M. H. Kim, S. A. R. Shah, S. U. Ahn, H. Yoon & S. Y. Noh. (2021). Performance Evaluations of Distributed File Systems for Scientific Big Data in FUSE Environment. Electronics, 10(12), 1471. https://doi.org/10.3390/electronics10121471
  10. M. K. Kim, I. J. Kim & J. S. Lee. (2021). CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory. Science Advances, 7(3). DOI: 10.1126/sciadv.abe1341
  11. P. Kumari, U. Surendranathan, M. Wasiolek, K. Hattar, N. P. Bhat & B. Ray. (2021). Radiation-Induced Error Mitigation by Read-Retry Technique for MLC 3-D NAND Flash Memory, IEEE Transactions on Nuclear Science, 68(5), 1032-1039. DOI: 10.1126/sciadv.abe1341
  12. S. S. Chae, R. Mativenga, J. Y. Paik, M. Attique & T. S. Chung. (2020). DSFTL: An efficient FTL for flash memory based storage systems. Electronics 9(1), 145, https://doi.org/10.3390/electronics9010145
  13. I. B. Zion. (2020). Key-value FTL over open channel SSD, 12th ACM International Conference on Systems and Storage. 192-192.
  14. H. S. Lee, H. S. Yun & D. H. Lee (2011). HFTL: hybrid flash translation layer based on hot data identification for flash memory. IEEE Transactions on Consumer Electronics, 55(4), 2005-2011. DOI: 10.1109/TCE.2009.5373762
  15. M. S. Rothberg. (2005). Disk drive for receiving setup data in a self monitoring analysis and reporting technology (SMART) command. United States Patent, US6895500.