DOI QR코드

DOI QR Code

Manufacturing Therapeutic Exosomes: from Bench to Industry

  • Received : 2021.11.23
  • Accepted : 2022.02.14
  • Published : 2022.05.31

Abstract

Exosome, a type of nanoparticles also known as small extracellular vesicles are gaining attention as novel therapeutics for various diseases because of their ability to deliver genetic or bioactive molecules to recipient cells. Although many pharmaceutical companies are gradually developing exosome therapeutics, numerous hurdles remain regarding manufacture of clinical-grade exosomes for therapeutic use. In this mini-review, we will discuss the manufacturing challenges of therapeutic exosomes, including cell line development, upstream cell culture, and downstream purification process. In addition, developing proper formulations for exosome storage and, establishing good manufacturing practice facility for producing therapeutic exosomes remains as challenges for developing clinical-grade exosomes. However, owing to the lack of consensus regarding the guidelines for manufacturing therapeutic exosomes, close communication between regulators and companies is required for the successful development of exosome therapeutics. This review shares the challenges and perspectives regarding the manufacture and quality control of clinical grade exosomes.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF) of Korea (2016M3A9B6945931) from Ministry of Science and ICT, Republic of Korea.

References

  1. Andreu, Z., Rivas, E., Sanguino-Pascual, A., Lamana, A., Marazuela, M., Gonzalez-Alvaro, I., Sanchez-Madrid, F., de la Fuente, H., and Yanez-Mo, M. (2016). Comparative analysis of EV isolation procedures for miRNAs detection in serum samples. J. Extracell. Vesicles 5, 31655. https://doi.org/10.3402/jev.v5.31655
  2. Bachurski, D., Schuldner, M., Nguyen, P.H., Malz, A., Reiners, K.S., Grenzi, P.C., Babatz, F., Schauss, A.C., Hansen, H.P., Hallek, M., et al. (2019). Extracellular vesicle measurements with nanoparticle tracking analysis - an accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J. Extracell. Vesicles 8, 1596016. https://doi.org/10.1080/20013078.2019.1596016
  3. Battistelli, M. and Falcieri, E. (2020). Apoptotic bodies: particular extracellular vesicles involved in intercellular communication. Biology (Basel) 9, 21. https://doi.org/10.3390/biology9010021
  4. Boing, A.N., van der Pol, E., Grootemaat, A.E., Coumans, F.A., Sturk, A., and Nieuwland, R. (2014). Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell. Vesicles 3, 10.3402/jev.v3.23430.
  5. Bracewell, D.G., Francis, R., and Smales, C.M. (2015). The future of host cell protein (HCP) identification during process development and manufacturing linked to a risk-based management for their control. Biotechnol. Bioeng. 112, 1727-1737. https://doi.org/10.1002/bit.25628
  6. Busatto, S., Vilanilam, G., Ticer, T., Lin, W.L., Dickson, D.W., Shapiro, S., Bergese, P., and Wolfram, J. (2018). Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells 7, 273. https://doi.org/10.3390/cells7120273
  7. Cao, J., Wang, B., Tang, T., Lv, L., Ding, Z., Li, Z., Hu, R., Wei, Q., Shen, A., Fu, Y., et al. (2020). Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury. Stem Cell Res. Ther. 11, 206. https://doi.org/10.1186/s13287-020-01719-2
  8. Chen, A.K., Chen, X., Choo, A.B., Reuveny, S., and Oh, S.K. (2011). Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res. 7, 97-111. https://doi.org/10.1016/j.scr.2011.04.007
  9. Chitoiu, L., Dobranici, A., Gherghiceanu, M., Dinescu, S., and Costache, M. (2020). Multi-omics data integration in extracellular vesicle biology-utopia or future reality? Int. J. Mol. Sci. 21, 8550. https://doi.org/10.3390/ijms21228550
  10. Choi, D., Go, G., Kim, D.K., Lee, J., Park, S.M., Di Vizio, D., and Gho, Y.S. (2020). Quantitative proteomic analysis of trypsin-treated extracellular vesicles to identify the real-vesicular proteins. J. Extracell. Vesicles 9, 1757209. https://doi.org/10.1080/20013078.2020.1757209
  11. Choi, D.S., Kim, D.K., Kim, Y.K., and Gho, Y.S. (2013). Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 13, 1554-1571. https://doi.org/10.1002/pmic.201200329
  12. Corso, G., Mager, I., Lee, Y., Gorgens, A., Bultema, J., Giebel, B., Wood, M.J.A., Nordin, J.Z., and Andaloussi, S.E. (2017). Reproducible and scalable purification of extracellular vesicles using combined bind-elute and size exclusion chromatography. Sci. Rep. 7, 11561. https://doi.org/10.1038/s41598-017-10646-x
  13. de Boer, I.H., Alpers, C.E., Azeloglu, E.U., Balis, U.G.J., Barasch, J.M., Barisoni, L., Blank, K.N., Bomback, A.S., Brown, K., Dagher, P.C., et al. (2021). Rationale and design of the Kidney Precision Medicine Project. Kidney Int. 99, 498-510. https://doi.org/10.1016/j.kint.2020.08.039
  14. Doyle, L.M. and Wang, M.Z. (2019). Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8, 727. https://doi.org/10.3390/cells8070727
  15. Goh, W.J., Zou, S., Ong, W.Y., Torta, F., Alexandra, A.F., Schiffelers, R.M., Storm, G., Wang, J.W., Czarny, B., and Pastorin, G. (2017). Bioinspired cell-derived nanovesicles versus exosomes as drug delivery systems: a cost-effective alternative. Sci. Rep. 7, 14322. https://doi.org/10.1038/s41598-017-14725-x
  16. Gurunathan, S., Kang, M.H., Jeyaraj, M., Qasim, M., and Kim, J.H. (2019). Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells 8, 307. https://doi.org/10.3390/cells8040307
  17. Heath, N., Grant, L., De Oliveira, T.M., Rowlinson, R., Osteikoetxea, X., Dekker, N., and Overman, R. (2018). Rapid isolation and enrichment of extracellular vesicle preparations using anion exchange chromatography. Sci. Rep. 8, 5730. https://doi.org/10.1038/s41598-018-24163-y
  18. Huang, T. and He, J. (2017). Characterization of extracellular vesicles by size-exclusion high-performance liquid chromatography (HPLC). Methods Mol. Biol. 1660, 191-199. https://doi.org/10.1007/978-1-4939-7253-1_15
  19. Ilahibaks, N.F., Lei, Z., Mol, E.A., Deshantri, A.K., Jiang, L., Schiffelers, R.M., Vader, P., and Sluijter, J.P.G. (2019). Biofabrication of cell-derived nanovesicles: a potential alternative to extracellular vesicles for regenerative medicine. Cells 8, 1509. https://doi.org/10.3390/cells8121509
  20. Jo, W., Kim, J., Yoon, J., Jeong, D., Cho, S., Jeong, H., Yoon, Y.J., Kim, S.C., Gho, Y.S., and Park, J. (2014). Large-scale generation of cell-derived nanovesicles. Nanoscale 6, 12056-12064. https://doi.org/10.1039/c4nr02391a
  21. Konoshenko, M.Y., Lekchnov, E.A., Vlassov, A.V., and Laktionov, P.P. (2018). Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res. Int. 2018, 8545347. https://doi.org/10.1155/2018/8545347
  22. Kosanovic, M., Milutinovic, B., Goc, S., Mitic, N., and Jankovic, M. (2017). Ion-exchange chromatography purification of extracellular vesicles. Biotechniques 63, 65-71. https://doi.org/10.2144/000114575
  23. Kurian, T.K., Banik, S., Gopal, D., Chakrabarti, S., and Mazumder, N. (2021). Elucidating methods for isolation and quantification of exosomes: a review. Mol. Biotechnol. 63, 249-266. https://doi.org/10.1007/s12033-021-00300-3
  24. Lobb, R.J., Becker, M., Wen, S.W., Wong, C.S.F., Wiegmans, A.P., Leimgruber, A., and Moller, A. (2015). Optimized exosome isolation protocol for cell culture supernatant and human plasma. J. Extracell. Vesicles 4, 27031. https://doi.org/10.3402/jev.v4.27031
  25. Malm, M., Saghaleyni, R., Lundqvist, M., Giudici, M., Chotteau, V., Field, R., Varley, P.G., Hatton, D., Grassi, L., Svensson, T., et al. (2020). Evolution from adherent to suspension: systems biology of HEK293 cell line development. Sci. Rep. 10, 18996. https://doi.org/10.1038/s41598-020-76137-8
  26. Martinelle, K., Mattsson, A., Rippner-Blomqvist, B., and Lindner, E. (2010). Effect of different cell culture medium surfactants on cell growth and viability. In Cells and Culture, T. Noll, eds. (Dordrecht, Netherlands: Springer Science+Business Media B.V.), pp. 819-822.
  27. Mendt, M., Rezvani, K., and Shpall, E. (2019). Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant. 54(Suppl 2), 789-792. https://doi.org/10.1038/s41409-019-0616-z
  28. Mitchell, M.J., Billingsley, M.M., Haley, R.M., Wechsler, M.E., Peppas, N.A., and Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101-124. https://doi.org/10.1038/s41573-020-0090-8
  29. Nam, G.H., Choi, Y., Kim, G.B., Kim, S., Kim, S.A., and Kim, I.S. (2020). Emerging prospects of exosomes for cancer treatment: from conventional therapy to immunotherapy. Adv. Mater. 32, e2002440.
  30. Naslund, T.I., Gehrmann, U., Qazi, K.R., Karlsson, M.C., and Gabrielsson, S. (2013). Dendritic cell-derived exosomes need to activate both T and B cells to induce antitumor immunity. J. Immunol. 190, 2712-2719. https://doi.org/10.4049/jimmunol.1203082
  31. Oeyen, E., Van Mol, K., Baggerman, G., Willems, H., Boonen, K., Rolfo, C., Pauwels, P., Jacobs, A., Schildermans, K., Cho, W.C., et al. (2018). Ultrafiltration and size exclusion chromatography combined with asymmetrical-flow field-flow fractionation for the isolation and characterisation of extracellular vesicles from urine. J. Extracell. Vesicles 7, 1490143. https://doi.org/10.1080/20013078.2018.1490143
  32. Ou, Y.H., Zou, S., Goh, W.J., Wang, J.W., Wacker, M., Czarny, B., and Pastorin, G. (2021). Cell-derived nanovesicles as exosome-mimetics for drug delivery purposes: uses and recommendations. Methods Mol. Biol. 2211, 147-170. https://doi.org/10.1007/978-1-0716-0943-9_11
  33. Pegtel, D.M. and Gould, S.J. (2019). Exosomes. Annu. Rev. Biochem. 88, 487-514. https://doi.org/10.1146/annurev-biochem-013118-111902
  34. Raposo, G. and Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373-383. https://doi.org/10.1083/jcb.201211138
  35. Song, Y., Kim, Y., Ha, S., Sheller-Miller, S., Yoo, J., Choi, C., and Park, C.H. (2021). The emerging role of exosomes as novel therapeutics: biology, technologies, clinical applications, and the next. Am. J. Reprod. Immunol. 85, e13329.
  36. Szatanek, R., Baj-Krzyworzeka, M., Zimoch, J., Lekka, M., Siedlar, M., and Baran, J. (2017). The methods of choice for extracellular vesicles (EVs) characterization. Int. J. Mol. Sci. 18, 1153. https://doi.org/10.3390/ijms18061153
  37. Thery, C., Amigorena, S., Raposo, G., and Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3, Unit 3.22.
  38. Thery, C., Witwer, K.W., Aikawa, E., Alcaraz, M.J., Anderson, J.D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G.K., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750. https://doi.org/10.1080/20013078.2018.1535750
  39. Thery, C., Zitvogel, L., and Amigorena, S. (2002). Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569-579. https://doi.org/10.1038/nri855
  40. Thippabhotla, S., Zhong, C., and He, M. (2019). 3D cell culture stimulates the secretion of in vivo like extracellular vesicles. Sci. Rep. 9, 13012. https://doi.org/10.1038/s41598-019-49671-3
  41. U.S. Food and Drug Administration (2020). Chemistry, Manufacturing, and Control (CMC) Information for Human Gene Therapy Investigational New Drug Applications (INDs) (Maryland: U.S. Food and Drug Administration).
  42. Valkama, A.J., Leinonen, H.M., Lipponen, E.M., Turkki, V., Malinen, J., Heikura, T., Yla-Herttuala, S., and Lesch, H.P. (2018). Optimization of lentiviral vector production for scale-up in fixed-bed bioreactor. Gene Ther. 25, 39-46. https://doi.org/10.1038/gt.2017.91
  43. Veziroglu, E.M. and Mias, G.I. (2020). Characterizing extracellular vesicles and their diverse RNA contents. Front. Genet. 11, 700. https://doi.org/10.3389/fgene.2020.00700
  44. Webber, J. and Clayton, A. (2013). How pure are your vesicles? J. Extracell. Vesicles 2, 10.3402/jev.v2i0.19861.
  45. Yang, H.C., Ham, Y.M., Kim, J.A., and Rhee, W.J. (2021). Single-step equipment-free extracellular vesicle concentration using super absorbent polymer beads. J. Extracell. Vesicles 10, e12074.
  46. Yang, X.X., Sun, C., Wang, L., and Guo, X.L. (2019). New insight into isolation, identification techniques and medical applications of exosomes. J. Control. Release 308, 119-129. https://doi.org/10.1016/j.jconrel.2019.07.021
  47. Yim, N., Ryu, S.W., Choi, K., Lee, K.R., Lee, S., Choi, H., Kim, J., Shaker, M.R., Sun, W., Park, J.H., et al. (2016). Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat. Commun. 7, 12277. https://doi.org/10.1038/ncomms12277
  48. Zhang, L., Jiao, G., Ren, S., Zhang, X., Li, C., Wu, W., Wang, H., Liu, H., Zhou, H., and Chen, Y. (2020a). Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem Cell Res. Ther. 11, 38. https://doi.org/10.1186/s13287-020-1562-9
  49. Zhang, Y., Bi, J., Huang, J., Tang, Y., Du, S., and Li, P. (2020b). Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomedicine 15, 6917-6934. https://doi.org/10.2147/IJN.S264498
  50. Zhao, X., Wu, D., Ma, X., Wang, J., Hou, W., and Zhang, W. (2020). Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake. Biomed. Pharmacother. 128, 110237. https://doi.org/10.1016/j.biopha.2020.110237