DOI QR코드

DOI QR Code

GATA2-Mediated Transcriptional Activation of Notch3 Promotes Pancreatic Cancer Liver Metastasis

  • Lin, Heng (Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University)) ;
  • Hu Peng (Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University)) ;
  • Zhang, Hongyu (Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University)) ;
  • Deng, Yong (Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University)) ;
  • Yang, Zhiqing (Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University)) ;
  • Zhang, Leida (Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University))
  • 투고 : 2021.07.02
  • 심사 : 2021.12.24
  • 발행 : 2022.05.31

초록

The liver is the predominant metastatic site for pancreatic cancer. However, the factors that determine the liver metastasis and the specific molecular mechanisms are still unclear. In this study, we used human pancreatic cancer cell line Hs766T to establish Hs766T-L3, a subline of Hs766T with stable liver metastatic ability. We performed RNA sequencing of Hs766T-L3 and its parental cell line Hs766T, and revealed huge differences in gene expression patterns and pathway activation between these two cell lines. We correlated the difference in pathway activation with the expression of the four core transcriptional factors including STAT1, NR2F2, GATA2, and SMAD4. Using the TCGA database, we examined the relative expression of these transcription factors (TFs) in pan-cancer and their relationship with the prognosis of the pancreatic cancer. Among these TFs, we considered GATA2 is closely involved in tumor metastasis and may serve as a potential metastatic driver. Further in vitro and in vivo experiments confirmed that GATA2-mediated transcriptional activation of Notch3 promotes the liver metastasis of Hs766T-L3, and knockdown of either GATA2 or Notch3 reduces the metastatic ability of Hs766T-L3. Therefore, we claim that GATA2 may serve as a metastatic driver of pancreatic cancer and a potential therapeutic target to treat liver metastasis of pancreatic cancer.

키워드

참고문헌

  1. Ahmed, S., Maratha, A., Butt, A.Q., Shevlin, E., and Miggin, S.M. (2013). TRIF-mediated TLR3 and TLR4 signaling is negatively regulated by ADAM15. J. Immunol. 190, 2217-2228. https://doi.org/10.4049/jimmunol.1201630
  2. Alvarado, A.G., Thiagarajan, P.S., Mulkearns-Hubert, E.E., Silver, D.J., Hale, J.S., Alban, T.J., Turaga, S.M., Jarrar, A., Reizes, O., Longworth, M.S., et al. (2017). Glioblastoma cancer stem cells evade innate immune suppression of self-renewal through reduced TLR4 expression. Cell Stem Cell 20, 450-461.e4. https://doi.org/10.1016/j.stem.2016.12.001
  3. Angkasekwinai, P. and Dong, C. (2021). IL-9-producing T cells: potential players in allergy and cancer. Nat. Rev. Immunol. 21, 37-48. https://doi.org/10.1038/s41577-020-0396-0
  4. Cappello, P., Curcio, C., Mandili, G., Roux, C., Bulfamante, S., and Novelli, F. (2018). Next generation immunotherapy for pancreatic cancer: DNA vaccination is seeking new combo partners. Cancers (Basel) 10, 51. https://doi.org/10.3390/cancers10020051
  5. Clark, E.A., Golub, T.R., Lander, E.S., and Hynes, R.O. (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532-535. https://doi.org/10.1038/35020106
  6. Cogli, L., Progida, C., Thomas, C.L., Spencer-Dene, B., Donno, C., Schiavo, G., and Bucci, C. (2013). Charcot-Marie-Tooth type 2B disease-causing RAB7A mutant proteins show altered interaction with the neuronal intermediate filament peripherin. Acta Neuropathol. 125, 257-272. https://doi.org/10.1007/s00401-012-1063-8
  7. de Pooter, R.F., Schmitt, T.M., de la Pompa, J.L., Fujiwara, Y., Orkin, S.H., and Zuniga-Pflucker, J.C. (2006). Notch signaling requires GATA-2 to inhibit myelopoiesis from embryonic stem cells and primary hemopoietic progenitors. J. Immunol. 176, 5267-5275. https://doi.org/10.4049/jimmunol.176.9.5267
  8. Deng, C.X. (2002). Roles of BRCA1 in centrosome duplication. Oncogene 21, 6222-6227. https://doi.org/10.1038/sj.onc.1205713
  9. Di Genua, C., Valletta, S., Buono, M., Stoilova, B., Sweeney, C., Rodriguez-Meira, A., Grover, A., Drissen, R., Meng, Y., Beveridge, R., et al. (2020). C/EBPalpha and GATA-2 mutations induce bilineage acute erythroid leukemia through transformation of a neomorphic neutrophil-erythroid progenitor. Cancer Cell 37, 690-704.e8. https://doi.org/10.1016/j.ccell.2020.03.022
  10. Duan, Q., Li, H., Gao, C., Zhao, H., Wu, S., Wu, H., Wang, C., Shen, Q., and Yin, T. (2019). High glucose promotes pancreatic cancer cells to escape from immune surveillance via AMPK-Bmi1-GATA2-MICA/B pathway. J. Exp. Clin. Cancer Res. 38, 192. https://doi.org/10.1186/s13046-019-1209-9
  11. Ducreux, M., Cuhna, A.S., Caramella, C., Hollebecque, A., Burtin, P., Goere, D., Seufferlein, T., Haustermans, K., Van Laethem, J.L., Conroy, T., et al. (2015). Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 26 Suppl 5, v56-v68.
  12. Feng, Q., Wu, X., Li, F., Ning, B., Lu, X., Zhang, Y., Pan, Y., and Guan, W. (2017). miR-27b inhibits gastric cancer metastasis by targeting NR2F2. Protein Cell 8, 114-122. https://doi.org/10.1007/s13238-016-0340-z
  13. Fidler, I.J. and Kripke, M.L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science 197, 893-895. https://doi.org/10.1126/science.887927
  14. Garcia, A. and Kandel, J.J. (2012). Notch: a key regulator of tumor angiogenesis and metastasis. Histol. Histopathol. 27, 151-156.
  15. Hahn, C.N., Chong, C.E., Carmichael, C.L., Wilkins, E.J., Brautigan, P.J., Li, X.C., Babic, M., Lin, M., Carmagnac, A., Lee, Y.K., et al. (2011). Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat. Genet. 43, 1012-1017. https://doi.org/10.1038/ng.913
  16. Hawkins, S.M., Loomans, H.A., Wan, Y.W., Ghosh-Choudhury, T., Coffey, D., Xiao, W., Liu, Z., Sangi-Haghpeykar, H., and Anderson, M.L. (2013). Expression and functional pathway analysis of nuclear receptor NR2F2 in ovarian cancer. J. Clin. Endocrinol. Metab. 98, E1152-E1162. https://doi.org/10.1210/jc.2013-1081
  17. Hennessy, E.J., Parker, A.E., and O'Neill, L.A. (2010). Targeting Toll-like receptors: emerging therapeutics? Nat. Rev. Drug Discov. 9, 293-307. https://doi.org/10.1038/nrd3203
  18. Hou, Y., Li, X., Li, Q., Xu, J., Yang, H., Xue, M., Niu, G., Zhuo, S., Mu, K., Wu, G., et al. (2018). STAT1 facilitates oestrogen receptor alpha transcription and stimulates breast cancer cell proliferation. J. Cell. Mol. Med. 22, 6077-6086. https://doi.org/10.1111/jcmm.13882
  19. Inder, S., O'Rourke, S., McDermott, N., Manecksha, R., Finn, S., Lynch, T., and Marignol, L. (2017). The Notch-3 receptor: a molecular switch to tumorigenesis? Cancer Treat. Rev. 60, 69-76. https://doi.org/10.1016/j.ctrv.2017.08.011
  20. Jones, S.A. and Jenkins, B.J. (2018). Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol. 18, 773-789. https://doi.org/10.1038/s41577-018-0066-7
  21. Kang, Y., Siegel, P.M., Shu, W., Drobnjak, M., Kakonen, S.M., Cordon-Cardo, C., Guise, T.A., and Massague, J. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537-549. https://doi.org/10.1016/S1535-6108(03)00132-6
  22. Karreth, F.A. and Pandolfi, P.P. (2013). ceRNA cross-talk in cancer: when ce-bling rivalries go awry. Cancer Discov. 3, 1113-1121. https://doi.org/10.1158/2159-8290.CD-13-0202
  23. Leatherwood, J. (1998). Emerging mechanisms of eukaryotic DNA replication initiation. Curr. Opin. Cell Biol. 10, 742-748. https://doi.org/10.1016/S0955-0674(98)80117-8
  24. Li, D., Xie, K., Wolff, R., and Abbruzzese, J.L. (2004). Pancreatic cancer. Lancet 363, 1049-1057. https://doi.org/10.1016/S0140-6736(04)15841-8
  25. Liang, M., Ma, Q., Ding, N., Luo, F., Bai, Y., Kang, F., Gong, X., Dong, R., Dai, J., Dai, Q., et al. (2019). IL-11 is essential in promoting osteolysis in breast cancer bone metastasis via RANKL-independent activation of osteoclastogenesis. Cell Death Dis. 10, 353. https://doi.org/10.1038/s41419-019-1594-1
  26. Lin, J., Hou, K.K., Piwnica-Worms, H., and Shaw, A.S. (2009). The polarity protein Par1b/EMK/MARK2 regulates T cell receptor-induced microtubule-organizing center polarization. J. Immunol. 183, 1215-1221. https://doi.org/10.4049/jimmunol.0803887
  27. Liu, C., Shi, J., Li, Q., Li, Z., Lou, C., Zhao, Q., Zhu, Y., Zhan, F., Lian, J., Wang, B., et al. (2019a). STAT1-mediated inhibition of FOXM1 enhances gemcitabine sensitivity in pancreatic cancer. Clin. Sci. (Lond.) 133, 645-663. https://doi.org/10.1042/CS20180816
  28. Liu, J., Qu, L., Meng, L., and Shou, C. (2019b). Topoisomerase inhibitors promote cancer cell motility via ROS-mediated activation of JAK2-STAT1-CXCL1 pathway. J. Exp. Clin. Cancer Res. 38, 370. https://doi.org/10.1186/s13046-019-1353-2
  29. Menendez-Gonzalez, J.B., Sinnadurai, S., Gibbs, A., Thomas, L.A., Konstantinou, M., Garcia-Valverde, A., Boyer, M., Wang, Z., Boyd, A.S., Blair, A., et al. (2019). Inhibition of GATA2 restrains cell proliferation and enhances apoptosis and chemotherapy mediated apoptosis in human GATA2 overexpressing AML cells. Sci. Rep. 9, 12212. https://doi.org/10.1038/s41598-019-48589-0
  30. Meurette, O. and Mehlen, P. (2018). Notch signaling in the tumor microenvironment. Cancer Cell 34, 536-548. https://doi.org/10.1016/j.ccell.2018.07.009
  31. Mohan, C.D., Rangappa, S., Preetham, H.D., Chandra Nayaka, S., Gupta, V.K., Basappa, S., Sethi, G., and Rangappa, K.S. (2020). Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Semin. Cancer Biol. 2020 Apr 20 [Epub]. https://doi.org/10.1016/j.semcancer.2020.03.016
  32. Poste, G. and Fidler, I.J. (1980). The pathogenesis of cancer metastasis. Nature 283, 139-146. https://doi.org/10.1038/283139a0
  33. Radtke, F., MacDonald, H.R., and Tacchini-Cottier, F. (2013). Regulation of innate and adaptive immunity by Notch. Nat. Rev. Immunol. 13, 427-437. https://doi.org/10.1038/nri3445
  34. Ramaswamy, S., Ross, K.N., Lander, E.S., and Golub, T.R. (2003). A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33, 49-54. https://doi.org/10.1038/ng1060
  35. Robert-Moreno, A., Espinosa, L., de la Pompa, J.L., and Bigas, A. (2005). RBPjkappa-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development 132, 1117-1126. https://doi.org/10.1242/dev.01660
  36. Rosas-Salvans, M., Scrofani, J., Modol, A., and Vernos, I. (2019). DnaJB6 is a RanGTP-regulated protein required for microtubule organization during mitosis. J. Cell Sci. 132, jcs227033. https://doi.org/10.1242/jcs.227033
  37. Rothenberg, E.V. and Scripture-Adams, D.D. (2008). Competition and collaboration: GATA-3, PU.1, and Notch signaling in early T-cell fate determination. Semin. Immunol. 20, 236-246. https://doi.org/10.1016/j.smim.2008.07.006
  38. Roy-Luzarraga, M. and Hodivala-Dilke, K. (2016). Molecular pathways: endothelial cell FAK-a target for cancer treatment. Clin. Cancer Res. 22, 3718-3724. https://doi.org/10.1158/1078-0432.CCR-14-2021
  39. Ryan, N., Anderson, K., Volpedo, G., Hamza, O., Varikuti, S., Satoskar, A.R., and Oghumu, S. (2020). STAT1 inhibits T-cell exhaustion and myeloid derived suppressor cell accumulation to promote antitumor immune responses in head and neck squamous cell carcinoma. Int. J. Cancer 146, 1717-1729. https://doi.org/10.1002/ijc.32781
  40. Screpanti, I., Bellavia, D., Campese, A.F., Frati, L., and Gulino, A. (2003). Notch, a unifying target in T-cell acute lymphoblastic leukemia? Trends Mol. Med. 9, 30-35. https://doi.org/10.1016/S1471-4914(02)00003-5
  41. Siegel, R.L., Miller, K.D., and Jemal, A. (2017). Cancer statistics, 2017. CA Cancer J. Clin. 67, 7-30. https://doi.org/10.3322/caac.21387
  42. Siegel, R.L., Miller, K.D., and Jemal, A. (2019). Cancer statistics, 2019. CA Cancer J. Clin. 69, 7-34. https://doi.org/10.3322/caac.21551
  43. Singel, S.M., Cornelius, C., Batten, K., Fasciani, G., Wright, W.E., Lum, L., and Shay, J.W. (2013). A targeted RNAi screen of the breast cancer genome identifies KIF14 and TLN1 as genes that modulate docetaxel chemosensitivity in triple-negative breast cancer. Clin. Cancer Res. 19, 2061-2070. https://doi.org/10.1158/1078-0432.CCR-13-0082
  44. Song, S.H., Jeon, M.S., Nam, J.W., Kang, J.K., Lee, Y.J., Kang, J.Y., Kim, H.P., Han, S.W., Kang, G.H., and Kim, T.Y. (2018). Aberrant GATA2 epigenetic dysregulation induces a GATA2/GATA6 switch in human gastric cancer. Oncogene 37, 993-1004. https://doi.org/10.1038/onc.2017.397
  45. Spinner, M.A., Sanchez, L.A., Hsu, A.P., Shaw, P.A., Zerbe, C.S., Calvo, K.R., Arthur, D.C., Gu, W., Gould, C.M., Brewer, C.C., et al. (2014). GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood 123, 809-821. https://doi.org/10.1182/blood-2013-07-515528
  46. Strebhardt, K. (2010). Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat. Rev. Drug Discov. 9, 643-660. https://doi.org/10.1038/nrd3184
  47. Sukhov, A., Adamopoulos, I.E., and Maverakis, E. (2016). Interactions of the immune system with skin and bone tissue in psoriatic arthritis: a comprehensive review. Clin. Rev. Allergy Immunol. 51, 87-99. https://doi.org/10.1007/s12016-016-8529-8
  48. Takebe, N., Nguyen, D., and Yang, S.X. (2014). Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol. Ther. 141, 140-149. https://doi.org/10.1016/j.pharmthera.2013.09.005
  49. Tang, X., Shi, L., Xie, N., Liu, Z., Qian, M., Meng, F., Xu, Q., Zhou, M., Cao, X., Zhu, W.G., et al. (2017). SIRT7 antagonizes TGF-beta signaling and inhibits breast cancer metastasis. Nat. Commun. 8, 318. https://doi.org/10.1038/s41467-017-00396-9
  50. van 't Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530-536. https://doi.org/10.1038/415530a
  51. Vidal, S.J., Rodriguez-Bravo, V., Quinn, S.A., Rodriguez-Barrueco, R., Lujambio, A., Williams, E., Sun, X., de la Iglesia-Vicente, J., Lee, A., Readhead, B., et al. (2015). A targetable GATA2-IGF2 axis confers aggressiveness in lethal prostate cancer. Cancer Cell 27, 223-239. https://doi.org/10.1016/j.ccell.2014.11.013
  52. Walden, M., Tian, L., Ross, R.L., Sykora, U.M., Byrne, D.P., Hesketh, E.L., Masandi, S.K., Cassel, J., George, R., Ault, J.R., et al. (2019). Metabolic control of BRISC-SHMT2 assembly regulates immune signalling. Nature 570, 194-199. https://doi.org/10.1038/s41586-019-1232-1
  53. Wang, F., Xia, X., Yang, C., Shen, J., Mai, J., Kim, H.C., Kirui, D., Kang, Y., Fleming, J.B., Koay, E.J., et al. (2018). SMAD4 gene mutation renders pancreatic cancer resistance to radiotherapy through promotion of autophagy. Clin. Cancer Res. 24, 3176-3185. https://doi.org/10.1158/1078-0432.CCR-17-3435
  54. Zhou, X.Z. and Lu, K.P. (2016). The isomerase PIN1 controls numerous cancer-driving pathways and is a unique drug target. Nat. Rev. Cancer 16, 463-478. https://doi.org/10.1038/nrc.2016.49