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ON GENERALIZED SYMMETRIC BI-f-DERIVATIONS

OF LATTICES

Kyung Ho Kim

Abstract. The goal of this paper is to introduce the notion of gen-
eralized symmetric bi-f -derivations in lattices and to study some
properties of generalized symmetric f -derivations of lattice. More-
over, we consider generalized isotone symmetric bi-f -derivations
and fixed sets related to generalized symmetric bi-f -derivations.

1. Introduction

Lattices play an important role in many fields such as information the-
ory, information retrieval, information access controls and cryptanalysis.
The properties of lattices were widely researched (for example, [1], [10],
[14]). In the theory of rings and near rings, the properties of derivations
are an important topic to study ([6], [12]). G. Szász [13] introduced the
notion of derivation on a lattice and discussed some related properties,
And then the notion of f -derivation, symmetric bi-derivations and per-
muting tri-derivations in lattices are introduced and proved some results
(see to the reference [2], [3], [9], [7], [8]).

The goal of this paper is to introduce the notion of generalized sym-
metric bi-f -derivations in lattices and to study some properties of gen-
eralized symmetric f -derivations of lattice. Furthermore, we take into
account generalized isotone symmetric bi-f -derivations and fixed sets
related to generalized symmetric bi-f -derivations.
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2. Preliminary

Definition 2.1. Let L be a nonempty set endowed with operations ∧
and ∨. By a lattice (L,∧,∨), we mean a set L satisfying the following
conditions :

(1) x ∧ x = x, x ∨ x = x for every x ∈ L.
(2) x ∧ y = y ∧ x, x ∨ y = y ∨ x for every x, y ∈ L.
(3) (x ∧ y)∧ z = x∧ (y ∧ z) , (x ∨ y)∨ z = x∨ (y ∨ z) for every x, y, z ∈ L.
(4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x for every x, y ∈ L.

Definition 2.2. Let (L,∧,∨) be a lattice. A binary relation ≤ is
defined by x ≤ y if and only if x∧y = x and x∨y = y for every x, y ∈ L.

Lemma 2.3. Let (L,∧,∨) be a lattice. Define the binary relation ≤
as the Definition 2.2. Then (L,≤) is a poset and for any x, y ∈ L, x ∧ y
is the g.l.b. of {x, y} and x ∨ y is the l.u.b. of {x, y}.

Definition 2.4. A lattice L is distributive if the identity (1) or (2)
holds :

(1) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for every x, y, z ∈ L.
(2) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for every x, y, z ∈ L.

In any lattice, the conditions (1) and (2) are equivalent.

Definition 2.5. A lattice L is modular if the following identity holds :
If x ≤ z, then x ∨ (y ∧ z) = (x ∨ y) ∧ z for every x, y, z ∈ L.

Definition 2.6. A non-empty subset I is called an ideal if the fol-
lowing conditions hold :

(1) If x ≤ y and y ∈ I, then x ∈ I for all x, y ∈ L.
(2) If x, y ∈ I then x ∨ y ∈ I.

Definition 2.7. Let (L,∧,∨) be a lattice. Let f : L → M be a
function from a lattice L to a lattice M.

(1) f is called a meet-homomorphism if f(x ∧ y) = f(x) ∧ f(y) for
every x, y ∈ L.

(2) f is called a join-homomorphism if f(x∨y) = f(x)∨f(y) for every
x, y ∈ L.

(3) f is called a lattice-homomorphism if f is a join-homomorphism
and a meet-homomorphism.

Definition 2.8. Let L be a lattice. A function d : L→ L is called a
f -derivation if there exists a function f : L→ L such that

d(x ∧ y) = (d(x) ∧ f(y)) ∨ (f(x) ∧ d(y))
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for all x, y ∈ L.

Definition 2.9. ([11]) Let L be a lattice and D(., .) : L×L→ L be
a symmetric mapping. We call D a symmetric bi-f -derivation on L if
there exists a function f : L→ L such that

D(x ∧ y, z) = (D(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z))

for all x, y ∈ L.

Proposition 2.10. ([11]) Let L be a lattice and let d be a trace of
symmetric bi-f -derivation D. Then

(1) D(x, y) ≤ f(x) and D(x, y) ≤ f(y) for every x, y ∈ L.
(2) D(x, y) ≤ f(x) ∧ f(y) for every x, y ∈ L.
(3) d(x) ≤ f(x) for every x, y ∈ L.

3. Generalized symmetric bi-f-derivations of lattices

Throughout the paper, L denotes a lattice unless otherwise specified.

Definition 3.1. Let D : L → L be a symmetric bi-f -derivation on
lattice L. A symmetric map ∆ : L × L → L is called a generalized
symmetric bi-f - derivation associated with D if

∆(x ∧ y, z) = (∆(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z))

for all x, y, z ∈ L. Obviously, a generalized symmetric bi-f -derivation ∆
on L satisfies the relation

∆(x, y ∧ z) = (∆(x, y) ∧ f(z)) ∨ (f(y) ∧D(x, z))

for all x, y, z ∈ L.

Definition 3.2. Let L be a lattice. The mapping δ : L → L de-
fined by δ(x) = ∆(x, x) for all x ∈ L, is called the trace of generalized
symmetric bi-f -derivation ∆.

Example 3.3. Let L be a lattice with a least element 0 and let f be
an endomorphism on L. The mapping D(x, y) = 0 for all x, y ∈ L, is a
symmetric bi-f - derivation on L. Define a mapping on L by ∆(x, y) =
f(x) ∧ f(y) for all x, y ∈ L. Then we can see that ∆ is a generalized
symmetric bi-f -derivation associated with D on L.

Example 3.4. Let L be a lattice with a least element 0 and let f be
an endomorphism on L and let a ∈ L. The mapping on L defined by
∆(x, y) = (f(x) ∧ f(y)) ∧ a, for all x, y ∈ L, is a generalized symmetric
bi-f -derivation associated with D(x, y) = 0 on L.
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Example 3.5. Let L = {0, 1, 2} be a lattice of following Figure 1 and
define mappings D, f and ∆ on L by

D(x, y) =

{
1 if (x, y) = (0, 0), (0, 1), (1, 0)

0 if (x, y) = (0, 2), (2, 0), (1, 1), (2, 2), (1, 2), (2, 1),

f(x) =

{
1 if x = 0

2 if x = 1, 2

and

∆(x, y) =

{
1 if x = (0, 0), (0, 1), (1, 0), (0, 2), (2, 0)

2 if x = (1, 1), (1, 2), (2, 1), (2, 2).

r 2

r 1

r 0

Figure 1

Then it is easily checked that ∆ is a generalized symmetric bi-f -
derivation of lattice L.

Proposition 3.6. Let ∆ is a generalized symmetric bi-f -derivation
associated with a symmetric bi-f -derivation D. Then the mapping f1 :
L → L defined by f1(x) = ∆(x, z), for all x, z ∈ L, and f2 : L → L
defined by f2(y) = ∆(x, y) for all x, y ∈ L, are generalized f -derivation
on L.

Proof. For every x, y, z ∈ L, we have

f1(x ∧ y) = ∆(x ∧ y, z)
= (f(x) ∧D(y, z))) ∨ (∆(x, z) ∧ f(y))

= (f(x) ∧ g1(y)) ∨ (f1(x) ∧ f(y)).

In this equation, the mapping g1 : L→ L defined by g1(y) = D(y, z) is a
f - derivation on L, where D is a symmetric bi-f -derivation on L. Hence
the mapping f1 is a generalized symmetric bi-f -derivation associated
with D.

Proposition 3.7. Let ∆ be a generalized symmetric bi-f -derivation
associated with a symmetric bi-f -derivation D. If L is a distributive
lattice, then we have
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(1) D(x, y) ≤ ∆(x, y) for every x, y ∈ L.
(2) ∆(x, y) ≤ f(x) and ∆(x, y) ≤ f(y) for every x, y ∈ L.
(3) ∆(x ∧ w, y) ≤ ∆(x, y) ∨∆(w, y) for every x, y ∈ L.
(4) ∆(x ∧ w, y) ≤ f(x) ∨ f(w) for every w, x, y ∈ L.
(5) If L has a least element 0, f(0) = 0 implies ∆(0, y) = 0 for every

y ∈ L.

Proof. (1) For every x, y ∈ L, we obtain

∆(x, y) = ∆(x ∧ x, y) = (∆(x, y) ∧ f(x)) ∨ (f(x) ∧D(x, y))

= (∆(x, y) ∨ f(x)) ∨D(x, y).

This implies D(x, y) ≤ ∆(x, y) for every x, y ∈ L.
(2) Since x ∧ x = x for all x ∈ L, we have by Proposition 2.10,

∆(x, y) = ∆(x ∧ x, y) = (∆(x, y) ∧ f(x)) ∨ (f(x) ∧D(x, y))

= (∆(x, y) ∧ f(x)) ∨D(x, y)

= (∆(x, y) ∨D(x, y)) ∧ (f(x) ∨D(x, y))

= ∆(x, y) ∧ f(x).

Therefore ∆(x, y) ≤ f(x) for all x, y ∈ L. Similarly, we can check
∆(x, y) ≤ f(y) for all x, y ∈ L.

(3) Since f(x) ∧D(w, y) ≤ D(w, y) ≤ ∆(x, y) and ∆(x, y) ∧ f(w) ≤
∆(x, y) for every w, x, y ∈ L, we obtain

(∆(x, y) ∧ f(w)) ∨ (f(x) ∧D(w, y)) ≤ ∆(x, y) ∨∆(w, y).

That is, ∆(x ∧ w, y) ≤ ∆(x, y) ∨∆(w, y).
(4) Since ∆(x, y) ∧ f(w) ≤ f(w) and f(x) ∧D(w, y) ≤ f(x), we get

(∆(x, y) ∧ f(w)) ∨ (f(x) ∧D(w, y)) ≤ f(x) ∨ f(w)

for every w, x, y ∈ L. That is, D(x ∧ w, y) ≤ f(x) ∨ f(w) for every
w, x, y ∈ L.

(5) Since 0 is the least element of L, we have

∆(0, y) = ∆(0 ∧ 0, y) = (∆(0, y) ∧ f(0)) ∨ (f(0) ∧D(0, y))

= 0 ∨ 0 = 0

for all x, y ∈ L.

Corollary 3.8. Let ∆ be a generalized symmetric bi-f -derivation
associated with a symmetric bi-f -derivation D and let δ be a trace of ∆
and let d be a trace of D. If L is a distributive lattice,, then the following
conditions hold.

(1) ∆(x, y) ≤ f(x) ∧ f(y) for every x, y ∈ L.
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(2) d(x) ≤ δ(x) ≤ f(x) for every x, y ∈ L.
(3) d(x) = x implies δ(x) = x for x, y ∈ L.

Theorem 3.9. Let L be a distributive lattice and let ∆ be a gen-
eralized symmetric bi-f -derivation associated with a symmetric bi-f -
derivation D and let δ a trace of ∆ and let d be a trace of D. Then we
have

δ(x ∧ y) = D(x, y) ∨ (f(x) ∧ d(y)) ∨ (f(y) ∧ δ(x))

for all x, y ∈ L.

Proof. Using Proposition 3.7 (1), we have

δ(x ∧ y) = ∆(x ∧ y, x ∧ y)

= (∆(x ∧ y, x) ∧ f(y)) ∨ (D(x ∧ y, y) ∧ f(x))

= (((∆(x, x) ∧ f(y)) ∨ (f(x) ∧D(x, y))) ∧ f(y))

∨ (f(x) ∧ ((D(x, y) ∧ f(y)) ∨ (f(x) ∧D(y, y))))

= (((δ(x) ∧ f(y) ∨D(x, y)) ∧ f(y)) ∨ (f(x) ∧ (D(x, y))

∨ (f(x) ∧ d(y))))

= ((δ(x) ∧ f(y) ∨D(x, y)) ∨ (D(x, y) ∨ (f(x) ∧ d(y)))

= (δ(x) ∧ f(y)) ∨ (d(y) ∧ f(x)) ∨D(x, y)

for every x, y ∈ L.

Theorem 3.10. Let L be a distributive lattice and let ∆1 and ∆2 be
generalized symmetric bi-f -derivations associated with a same symmet-
ric bi-f -derivation D. Then the mapping ∆1 ∧∆2 defined by

(∆1 ∧∆2)(x, y) = ∆1(x, y) ∧∆2(x, y)

for every x, y ∈ L is a generalized symmetric bi-f -derivations associated
with a symmetric bi-f -derivation D.

Proof. For every x, y, z ∈ L, we have

(∆1 ∧∆2)(x ∧ y, z) = ∆1(x ∧ y, z) ∧∆2(x ∧ y, z)
= ((∆1(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z)))

∧ ((∆2(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z)))

= (((∆1(x, z) ∧ f(y)) ∧ (∆2(x, z) ∧ f(y))))

∨ (f(x) ∧D(y, z))

= (∆1(x, z) ∧∆2(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z))

= ((∆1 ∧∆2)(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z)).

This completes the proof.
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Theorem 3.11. Let L be a distributive lattice and let ∆1 and ∆2 be
generalized symmetric bi-f -derivations associated with a same symmet-
ric bi-f -derivation D. Then the mapping ∆1 ∨∆2 defined by

(∆1 ∨∆2)(x, y) = ∆1(x, y) ∨∆2(x, y)

for every x, y ∈ L is a generalized symmetric bi-f -derivations associated
with a symmetric bi-f -derivation D.

Proof. For every x, y, z ∈ L, we have

(∆1 ∨∆2)(x ∧ y, z) = ∆1(x ∧ y, z) ∨∆2(x ∧ y, z)
= ((∆1(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z)))

∨ ((∆2(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z)))

= (((∆1(x, z) ∧ f(y)) ∨ (∆2(x, z) ∧ f(y))))

∨ (f(x) ∧D(y, z))

= (∆1(x, z) ∨∆2(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z))

= ((∆1 ∨∆2)(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z)).

This completes the proof.

Definition 3.12. Let L be a distributive lattice and let ∆ be a
generalized symmetric bi-f -derivations associated with a symmetric bi-
f -derivation D and let δ be a trace of ∆. If x ≤ y implies δ(x) ≤ δ(y)
for every x, y ∈ L, then δ is called an isotone mapping.

Theorem 3.13. Let L be a distributive lattice with greatest element
1 and let f be a meet-homomorphism on L and let δ be a trace of
generalized symmetric bi-f -derivation ∆ associated with a symmetric
bi-f -derivation D. Then the following conditions are equivalent.

(1) δ is an isotone mapping on L.
(2) δ(x) = f(x) ∧ δ(1) for every x ∈ L.
(3) δ(x ∧ y) = δ(x) ∧ δ(y) for every x, y ∈ L.
(4) δ(x) ∨ δ(y) ≤ δ(x ∨ y) for every x, y ∈ L.

Proof. (1) ⇒ (2). Since d is isotone and x ≤ 1, we have δ(x) ≤ δ(1).
By Proposition 3.7(1), we obtain δ(x) ≤ f(x), and so δ(x) ≤ f(x)∧δ(1).
By Corollary 3.8(2), we have f(x)∧δ(1) ≤ δ(x). Hence we obtain δ(x) =
f(x) ∧ δ(1) for all x ∈ L.

(2) ⇒ (3). Let δ(x) = f(x) ∧ δ(1) for all x ∈ L. Then we have

δ(x ∧ y) = f(x ∧ y) ∧ δ(1) = (f(x) ∧ f(y)) ∧ (δ(1) ∧ δ(1))

= (f(x) ∧ δ(1)) ∧ (f(y) ∧ δ(1)) = δ(x) ∧ δ(y)
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for all x, y ∈ L.
(3)⇒ (1). Let δ(x∧y) = δ(x)∧δ(y) and x ≤ y. Then δ(x) = δ(x∧y) =

δ(x) ∧ δ(y). Hence δ(x) ≤ δ(y) for every x, y ∈ L.
(1) ⇒ (4). Let δ be isotone. Since x ≤ x ∨ y and y ≤ x ∨ y, δ(x) ≤

δ(x ∨ y) and δ(y) ≤ δ(x ∨ y). Hence δ(x) ∨ δ(y) ≤ δ(x ∨ y) for every
x, y ∈ L.

(4) ⇒ (1). Let x ≤ y. Since δ(x) ≤ δ(x ∨ y) = δ(y), which implies
δ(x) ≤ δ(y) for every w, x, y ∈ L. Hence δ is isotone.

Definition 3.14. Let L be a lattice and ∆ be a generalized sym-
metric bi-f -derivation associated with a symmetric bi-f -derivation D. If
x ≤ w implies ∆(x, y) ≤ ∆(w, y) for every w, x, y ∈ L, then ∆ is called
a generalized isotone symmetric bi-f -derivation of L.

Theorem 3.15. Let L be a lattice with greatest element 1, ∆ a
generalized symmetric bi-f -derivation associated with a symmetric bi-
f -derivation D and let f be a meet-homomorphism on L. The following
conditions are equivalent.

(1) ∆ is a generalized isotone symmetric bi-f -derivation of L.
(2) ∆(x, y) ∨∆(w, y) ≤ ∆(x ∨ w, y) for every w, x, y ∈ L.
(3) ∆(x, y) = f(x) ∧∆(1, y) for every x, y ∈ L.
(4) ∆(x ∧ w, y) = ∆(x, y) ∧∆(w, y) for every w, x, y ∈ L.

Proof. (1)⇒ (2). Suppose that ∆ is a generalized isotone symmetric
bi-f -derivation. Since x ≤ x ∨ w and w ≤ x ∨ w for every w, x, y ∈ L,
we obtain ∆(x, y) ≤ ∆(x ∨ w, y) and ∆(w, y) ≤ ∆(x ∨ w, y). Therefore,
∆(x, y) ∨∆(w, y) ≤ ∆(x ∨ w, y).

(2) ⇒ (1). Suppose that ∆(x, y) ∨∆(w, y) ≤ ∆(x ∨ w, y) and x ≤ w
for all w, x, y ∈ L. Then we have

∆(x, y) ≤ ∆(x, y) ∨∆(w, y) ≤ ∆(x ∨ w, y) = ∆(w, y).

Hence ∆ is a generalized isotone symmetric bi-f -derivation on L.

(1) ⇒ (3). Suppose that ∆ is a generalized isotone symmetric bi-f -
derivation. Since ∆(x, y) ≤ ∆(1, y), we have ∆(x, y) ≤ f(x) ∧ ∆(1, y)
by Proposition 3.6 (1). Hence we have

∆(x, y) = (∆(1, y) ∧ f(x)) ∨D(x, y) = ∆(1, y) ∧ f(x)

for every x, y ∈ L.
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(3) ⇒ (4). Suppose that ∆(x, y) = f(x) ∧∆(1, y). Then we have

∆(x ∧ w, y) = f(x ∧ w) ∧∆(1, y)

= f(x) ∧ f(w) ∧D(1, y)

= (f(x) ∧D(1, y)) ∧ (f(w) ∧D(1, y))

= D(x, y) ∧D(w, y)

for every w, x, y ∈ L.
(4) ⇒ (1). Let ∆(x ∧ w, y) = ∆(x, y) ∧∆(w, y) and x ≤ w. Then we

have ∆(x, y) = ∆(x ∧ w, y) = ∆(x, y) ∧ ∆(w, y). Therefore, ∆(x, y) ≤
∆(w, y) for every w, x, y ∈ L.

Let ∆ be a generalized symmetric bi-f -derivation associated with a sym-
metric bi-f -derivation D and let δ be a trace of ∆ and let d be a trace
of D. For each a ∈ L and define sets Fixd(L) and Fixδ(L) by

FixD(L) = {x ∈ L | D(x, a) = f(x)}
and

Fix∆(L) = {x ∈ L | ∆(x, a) = f(x)}.

Lemma 3.16. Let L be a lattice and let ∆ be a generalized symmetric
bi-f -derivation associated with a symmetric bi-f -derivation D. Then we
have FixD(L) ⊆ Fix∆(L).

Proof. Let x ∈ FixD(L). Then we have D(x, a) = f(x) for a ∈ L.
Hence

∆(x, a) = ∆(x ∧ x, a) = (∆(x, a) ∧ f(x)) ∨ (f(x) ∧D(x, a))

= (∆(x, a) ∧ f(x)) ∨ (f(x) ∧ f(x))

= (∆(x, a) ∧ f(x)) ∨ f(x) = f(x)

This implies x ∈ Fix∆(L), that is, FixD(L) ⊆ Fix∆(L).

Proposition 3.17. Let L be a distributive lattice and let ∆ be a
generalized symmetric bi-f -derivation associated with a symmetric bi-f -
derivation D. If f is isotone, x ≤ y and y ∈ FixD(L), then x ∈ Fix∆(L)
for all x, y ∈ L.

Proof. Let y ∈ FixD(L). Then we get D(y, a) = f(y). Hence we have

∆(x, a) = ∆(x ∧ y, a) = (∆(x, a) ∧ f(x)) ∨ (f(x) ∧D(y, a))

= (∆(x, a) ∧ f(x)) ∨ (f(x) ∧ f(y)) = (∆(x, a) ∧ f(x)) ∨ f(x)

= (∆(x, a) ∨ f(x)) ∧ (f(x) ∨ f(x)) = f(x) ∨ f(x) = f(x).

This implies x ∈ Fix∆(L).
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Definition 3.18. Let L be a lattice. The mapping ∆ satisfying
∆(x ∨ y, z) = ∆(x, z) ∨ ∆(y, z) for all x, y, z ∈ L, is called a joinitive
mapping on L.

Theorem 3.19. Let L be a lattice and let ∆ be a generalized symmet-
ric bi-f -derivation associated with a symmetric bi-f -derivation D. If f
is a join-homomorphism on L and let ∆ is joinitive, then x, y ∈ Fix∆(L)
implies x ∨ y ∈ Fix∆(L).

Proof. Let x, y ∈ Fix∆(L). Then ∆(x, a) = f(x) and ∆(y, a) = f(y).
Hence ∆(x ∨ y, a) = ∆(x, a) ∨∆(y, a) = f(x) ∨ f(y) = f(x ∨ y), which
implies x ∨ y ∈ Fix∆(L).

Proposition 3.20. Let L be a lattice and let ∆ be a generalized sym-
metric bi-f -derivation associated with a symmetric bi-f -derivation D. If
f is a meet-homomorphism on L and x ∈ Fix∆(L) and y ∈ FixD(L),
we have x ∧ y ∈ Fix∆(L) for all x, y ∈ L.

Proof. Let x ∈ Fix∆(L) and y ∈ FixD(L). Then f(x) = ∆(x, a) and
f(y) = D(y, a). Hence we have

∆(x ∧ y, a) = (∆(x, a) ∧ f(y)) ∨ (f(x) ∧D(y, a))

= (f(x) ∧ f(y)) ∨ (f(x) ∧ f(y))

= f(x) ∧ f(y) = f(x ∧ y).

Hence x ∧ y ∈ Fix∆(L).

Proposition 3.21. Let L be a lattice and let ∆ be a generalized
symmetric bi-f -derivation associated with a symmetric bi-f -derivation
D. Then, for every w, x, y ∈ L, the following identities hold.

(1) If ∆ is a generalized isotone symmetric bi-f -derivation, then

∆(x, y) = D(x, y) ∨ (∆(x ∨ w, y) ∧ f(x))

for every w, x, y ∈ L.
(2) If f is a join-homomorphism on L, then

∆(x, y) = D(x, y) ∨ (∆(x ∨ w, y) ∧ f(x))

for every w, x, y ∈ L.
(3) If f(x) is an increasing function, then

∆(x, y) = D(x, y) ∨ (f(x) ∧∆(x ∨ w, y))

for every w, x, y ∈ L.
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Proof. (1) Let ∆ be a generalized isotone symmetric bi-f -derivation.
Then we have

∆(x, y) = ∆((x ∨ w) ∧ x, y)

= (∆(x ∨ w, y) ∧ f(x)) ∨ (f(x ∨ w) ∧D(x, y))

= (∆(x ∨ w, y) ∧ f(x)) ∨D(x, y)

since D(x, y) ≤ ∆(x, y) ≤ ∆(x ∨ w, y) ≤ f(x ∨ w) for every w, x, y ∈ L.
(2) Since D(x, y) ≤ f(x) ≤ f(x) ∨ f(w) and f(x ∨w) = f(x) ∨ f(w),

we obtain

∆(x, y) = ∆((x ∨ w) ∧ x, y)

= (∆(x ∨ w, y) ∧ f(x)) ∨ (f(x ∨ w) ∧D(x, y))

= (∆(x ∨ w, y) ∧ f(x)) ∨D(x, y)

for every w, x, y ∈ L.
(3) Since f is an increasing function and x ≤ x∨w, we have D(x, y) ≤

f(x) ≤ f(x ∨ w) and so,

∆(x, y) = ∆((x ∨ w) ∧ x, y)

= (∆(x ∨ w, y) ∧ f(x)) ∨ (f(x ∨ w) ∧D(x, y))

= (∆(x ∨ w, y) ∧ f(x)) ∨D(x, y)

for every w, x, y ∈ L.
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