ON GENERALIZED SYMMETRIC BI- f-DERIVATIONS OF LATTICES

Kyung Ho Kim

Abstract

The goal of this paper is to introduce the notion of generalized symmetric bi- f-derivations in lattices and to study some properties of generalized symmetric f-derivations of lattice. Moreover, we consider generalized isotone symmetric bi- f-derivations and fixed sets related to generalized symmetric bi-f-derivations.

1. Introduction

Lattices play an important role in many fields such as information theory, information retrieval, information access controls and cryptanalysis. The properties of lattices were widely researched (for example, [1], [10], [14]). In the theory of rings and near rings, the properties of derivations are an important topic to study ([6], [12]). G. Szász [13] introduced the notion of derivation on a lattice and discussed some related properties, And then the notion of f-derivation, symmetric bi-derivations and permuting tri-derivations in lattices are introduced and proved some results (see to the reference [2], [3], [9], [7], [8]).

The goal of this paper is to introduce the notion of generalized symmetric bi- f-derivations in lattices and to study some properties of generalized symmetric f-derivations of lattice. Furthermore, we take into account generalized isotone symmetric bi- f-derivations and fixed sets related to generalized symmetric bi- f-derivations.

[^0]
2. Preliminary

Definition 2.1. Let L be a nonempty set endowed with operations \wedge and \vee. By a lattice (L, \wedge, \vee), we mean a set L satisfying the following conditions:
(1) $x \wedge x=x, x \vee x=x$ for every $x \in L$.
(2) $x \wedge y=y \wedge x, x \vee y=y \vee x$ for every $x, y \in L$.
(3) $(x \wedge y) \wedge z=x \wedge(y \wedge z),(x \vee y) \vee z=x \vee(y \vee z)$ for every $x, y, z \in L$.
(4) $(x \wedge y) \vee x=x,(x \vee y) \wedge x=x$ for every $x, y \in L$.

Definition 2.2. Let (L, \wedge, \vee) be a lattice. A binary relation \leq is defined by $x \leq y$ if and only if $x \wedge y=x$ and $x \vee y=y$ for every $x, y \in L$.

Lemma 2.3. Let (L, \wedge, \vee) be a lattice. Define the binary relation \leq as the Definition 2.2. Then (L, \leq) is a poset and for any $x, y \in L, x \wedge y$ is the g.l.b. of $\{x, y\}$ and $x \vee y$ is the l.u.b. of $\{x, y\}$.

Definition 2.4. A lattice L is distributive if the identity (1) or (2) holds :
(1) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$ for every $x, y, z \in L$.
(2) $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$ for every $x, y, z \in L$.

In any lattice, the conditions (1) and (2) are equivalent.
Definition 2.5. A lattice L is modular if the following identity holds: If $x \leq z$, then $x \vee(y \wedge z)=(x \vee y) \wedge z$ for every $x, y, z \in L$.

Definition 2.6. A non-empty subset I is called an ideal if the following conditions hold:
(1) If $x \leq y$ and $y \in I$, then $x \in I$ for all $x, y \in L$.
(2) If $x, y \in I$ then $x \vee y \in I$.

Definition 2.7. Let (L, \wedge, \vee) be a lattice. Let $f: L \rightarrow M$ be a function from a lattice L to a lattice M.
(1) f is called a meet-homomorphism if $f(x \wedge y)=f(x) \wedge f(y)$ for every $x, y \in L$.
(2) f is called a join-homomorphism if $f(x \vee y)=f(x) \vee f(y)$ for every $x, y \in L$.
(3) f is called a lattice-homomorphism if f is a join-homomorphism and a meet-homomorphism.
Definition 2.8. Let L be a lattice. A function $d: L \rightarrow L$ is called a f-derivation if there exists a function $f: L \rightarrow L$ such that

$$
d(x \wedge y)=(d(x) \wedge f(y)) \vee(f(x) \wedge d(y))
$$

for all $x, y \in L$.
Definition 2.9. ([11]) Let L be a lattice and $D(.,):. L \times L \rightarrow L$ be a symmetric mapping. We call D a symmetric bi-f-derivation on L if there exists a function $f: L \rightarrow L$ such that

$$
D(x \wedge y, z)=(D(x, z) \wedge f(y)) \vee(f(x) \wedge D(y, z))
$$

for all $x, y \in L$.
Proposition 2.10. ([11]) Let L be a lattice and let d be a trace of symmetric bi-f-derivation D. Then
(1) $D(x, y) \leq f(x)$ and $D(x, y) \leq f(y)$ for every $x, y \in L$.
(2) $D(x, y) \leq f(x) \wedge f(y)$ for every $x, y \in L$.
(3) $d(x) \leq f(x)$ for every $x, y \in L$.

3. Generalized symmetric bi- f-derivations of lattices

Throughout the paper, L denotes a lattice unless otherwise specified.
Definition 3.1. Let $D: L \rightarrow L$ be a symmetric bi- f-derivation on lattice L. A symmetric map $\Delta: L \times L \rightarrow L$ is called a generalized symmetric bi-f-derivation associated with D if

$$
\Delta(x \wedge y, z)=(\Delta(x, z) \wedge f(y)) \vee(f(x) \wedge D(y, z))
$$

for all $x, y, z \in L$. Obviously, a generalized symmetric bi- f-derivation Δ on L satisfies the relation

$$
\Delta(x, y \wedge z)=(\Delta(x, y) \wedge f(z)) \vee(f(y) \wedge D(x, z))
$$

for all $x, y, z \in L$.
Definition 3.2. Let L be a lattice. The mapping $\delta: L \rightarrow L$ defined by $\delta(x)=\Delta(x, x)$ for all $x \in L$, is called the trace of generalized symmetric bi- f-derivation Δ.

Example 3.3. Let L be a lattice with a least element 0 and let f be an endomorphism on L. The mapping $D(x, y)=0$ for all $x, y \in L$, is a symmetric bi- f - derivation on L. Define a mapping on L by $\Delta(x, y)=$ $f(x) \wedge f(y)$ for all $x, y \in L$. Then we can see that Δ is a generalized symmetric bi- f-derivation associated with D on L.

Example 3.4. Let L be a lattice with a least element 0 and let f be an endomorphism on L and let $a \in L$. The mapping on L defined by $\Delta(x, y)=(f(x) \wedge f(y)) \wedge a$, for all $x, y \in L$, is a generalized symmetric bi- f-derivation associated with $D(x, y)=0$ on L.

Example 3.5. Let $L=\{0,1,2\}$ be a lattice of following Figure 1 and define mappings D, f and Δ on L by

$$
\begin{gathered}
D(x, y)=\left\{\begin{array}{ll}
1 & \text { if }(x, y)=(0,0),(0,1),(1,0) \\
0 & \text { if }(x, y)
\end{array}=(0,2),(2,0),(1,1),(2,2),(1,2),(2,1)\right. \\
f(x) \\
= \begin{cases}1 & \text { if } x=0 \\
2 & \text { if } x=1,2\end{cases}
\end{gathered}
$$

and

$$
\Delta(x, y)= \begin{cases}1 & \text { if } x=(0,0),(0,1),(1,0),(0,2),(2,0) \\ 2 & \text { if } x=(1,1),(1,2),(2,1),(2,2)\end{cases}
$$

Figure 1

Then it is easily checked that Δ is a generalized symmetric bi- f derivation of lattice L.

Proposition 3.6. Let Δ is a generalized symmetric bi-f-derivation associated with a symmetric bi-f-derivation D. Then the mapping f_{1} : $L \rightarrow L$ defined by $f_{1}(x)=\Delta(x, z)$, for all $x, z \in L$, and $f_{2}: L \rightarrow L$ defined by $f_{2}(y)=\Delta(x, y)$ for all $x, y \in L$, are generalized f-derivation on L.

Proof. For every $x, y, z \in L$, we have

$$
\begin{aligned}
f_{1}(x \wedge y) & =\Delta(x \wedge y, z) \\
& =(f(x) \wedge D(y, z))) \vee(\Delta(x, z) \wedge f(y)) \\
& =\left(f(x) \wedge g_{1}(y)\right) \vee\left(f_{1}(x) \wedge f(y)\right) .
\end{aligned}
$$

In this equation, the mapping $g_{1}: L \rightarrow L$ defined by $g_{1}(y)=D(y, z)$ is a f - derivation on L, where D is a symmetric bi- f-derivation on L. Hence the mapping f_{1} is a generalized symmetric bi- f-derivation associated with D.

Proposition 3.7. Let Δ be a generalized symmetric bi- f-derivation associated with a symmetric bi-f-derivation D. If L is a distributive lattice, then we have
(1) $D(x, y) \leq \Delta(x, y)$ for every $x, y \in L$.
(2) $\Delta(x, y) \leq f(x)$ and $\Delta(x, y) \leq f(y)$ for every $x, y \in L$.
(3) $\Delta(x \wedge w, y) \leq \Delta(x, y) \vee \Delta(w, y)$ for every $x, y \in L$.
(4) $\Delta(x \wedge w, y) \leq f(x) \vee f(w)$ for every $w, x, y \in L$.
(5) If L has a least element $0, f(0)=0$ implies $\Delta(0, y)=0$ for every $y \in L$.

Proof. (1) For every $x, y \in L$, we obtain

$$
\begin{aligned}
\Delta(x, y) & =\Delta(x \wedge x, y)=(\Delta(x, y) \wedge f(x)) \vee(f(x) \wedge D(x, y)) \\
& =(\Delta(x, y) \vee f(x)) \vee D(x, y) .
\end{aligned}
$$

This implies $D(x, y) \leq \Delta(x, y)$ for every $x, y \in L$.
(2) Since $x \wedge x=x$ for all $x \in L$, we have by Proposition 2.10,

$$
\begin{aligned}
\Delta(x, y) & =\Delta(x \wedge x, y)=(\Delta(x, y) \wedge f(x)) \vee(f(x) \wedge D(x, y)) \\
& =(\Delta(x, y) \wedge f(x)) \vee D(x, y) \\
& =(\Delta(x, y) \vee D(x, y)) \wedge(f(x) \vee D(x, y)) \\
& =\Delta(x, y) \wedge f(x) .
\end{aligned}
$$

Therefore $\Delta(x, y) \leq f(x)$ for all $x, y \in L$. Similarly, we can check $\Delta(x, y) \leq f(y)$ for all $x, y \in L$.
(3) Since $f(x) \wedge D(w, y) \leq D(w, y) \leq \Delta(x, y)$ and $\Delta(x, y) \wedge f(w) \leq$ $\Delta(x, y)$ for every $w, x, y \in L$, we obtain

$$
(\Delta(x, y) \wedge f(w)) \vee(f(x) \wedge D(w, y)) \leq \Delta(x, y) \vee \Delta(w, y)
$$

That is, $\Delta(x \wedge w, y) \leq \Delta(x, y) \vee \Delta(w, y)$.
(4) Since $\Delta(x, y) \wedge f(w) \leq f(w)$ and $f(x) \wedge D(w, y) \leq f(x)$, we get

$$
(\Delta(x, y) \wedge f(w)) \vee(f(x) \wedge D(w, y)) \leq f(x) \vee f(w)
$$

for every $w, x, y \in L$. That is, $D(x \wedge w, y) \leq f(x) \vee f(w)$ for every $w, x, y \in L$.
(5) Since 0 is the least element of L, we have

$$
\begin{aligned}
\Delta(0, y) & =\Delta(0 \wedge 0, y)=(\Delta(0, y) \wedge f(0)) \vee(f(0) \wedge D(0, y)) \\
& =0 \vee 0=0
\end{aligned}
$$

for all $x, y \in L$.
Corollary 3.8. Let Δ be a generalized symmetric bi-f-derivation associated with a symmetric bi- f-derivation D and let δ be a trace of Δ and let d be a trace of D. If L is a distributive lattice,, then the following conditions hold.
(1) $\Delta(x, y) \leq f(x) \wedge f(y)$ for every $x, y \in L$.
(2) $d(x) \leq \delta(x) \leq f(x)$ for every $x, y \in L$.
(3) $d(x)=x$ implies $\delta(x)=x$ for $x, y \in L$.

Theorem 3.9. Let L be a distributive lattice and let Δ be a generalized symmetric bi-f-derivation associated with a symmetric bi-fderivation D and let δ a trace of Δ and let d be a trace of D. Then we have

$$
\delta(x \wedge y)=D(x, y) \vee(f(x) \wedge d(y)) \vee(f(y) \wedge \delta(x))
$$

for all $x, y \in L$.
Proof. Using Proposition 3.7 (1), we have

$$
\begin{aligned}
\delta(x \wedge y)= & \Delta(x \wedge y, x \wedge y) \\
= & (\Delta(x \wedge y, x) \wedge f(y)) \vee(D(x \wedge y, y) \wedge f(x)) \\
= & (((\Delta(x, x) \wedge f(y)) \vee(f(x) \wedge D(x, y))) \wedge f(y)) \\
& \vee(f(x) \wedge((D(x, y) \wedge f(y)) \vee(f(x) \wedge D(y, y)))) \\
= & (((\delta(x) \wedge f(y) \vee D(x, y)) \wedge f(y)) \vee(f(x) \wedge(D(x, y)) \\
& \vee(f(x) \wedge d(y)))) \\
= & ((\delta(x) \wedge f(y) \vee D(x, y)) \vee(D(x, y) \vee(f(x) \wedge d(y))) \\
= & (\delta(x) \wedge f(y)) \vee(d(y) \wedge f(x)) \vee D(x, y)
\end{aligned}
$$

for every $x, y \in L$.
Theorem 3.10. Let L be a distributive lattice and let Δ_{1} and Δ_{2} be generalized symmetric bi-f-derivations associated with a same symmetric bi- f-derivation D. Then the mapping $\Delta_{1} \wedge \Delta_{2}$ defined by

$$
\left(\Delta_{1} \wedge \Delta_{2}\right)(x, y)=\Delta_{1}(x, y) \wedge \Delta_{2}(x, y)
$$

for every $x, y \in L$ is a generalized symmetric bi- f-derivations associated with a symmetric bi-f-derivation D.

Proof. For every $x, y, z \in L$, we have

$$
\begin{aligned}
\left(\Delta_{1} \wedge \Delta_{2}\right)(x \wedge y, z)= & \Delta_{1}(x \wedge y, z) \wedge \Delta_{2}(x \wedge y, z) \\
= & \left(\left(\Delta_{1}(x, z) \wedge f(y)\right) \vee(f(x) \wedge D(y, z))\right) \\
& \wedge\left(\left(\Delta_{2}(x, z) \wedge f(y)\right) \vee(f(x) \wedge D(y, z))\right) \\
= & \left(\left(\left(\Delta_{1}(x, z) \wedge f(y)\right) \wedge\left(\Delta_{2}(x, z) \wedge f(y)\right)\right)\right) \\
& \vee(f(x) \wedge D(y, z)) \\
= & \left(\Delta_{1}(x, z) \wedge \Delta_{2}(x, z) \wedge f(y)\right) \vee(f(x) \wedge D(y, z)) \\
= & \left(\left(\Delta_{1} \wedge \Delta_{2}\right)(x, z) \wedge f(y)\right) \vee(f(x) \wedge D(y, z)) .
\end{aligned}
$$

This completes the proof.

Theorem 3.11. Let L be a distributive lattice and let Δ_{1} and Δ_{2} be generalized symmetric bi-f-derivations associated with a same symmetric bi-f-derivation D. Then the mapping $\Delta_{1} \vee \Delta_{2}$ defined by

$$
\left(\Delta_{1} \vee \Delta_{2}\right)(x, y)=\Delta_{1}(x, y) \vee \Delta_{2}(x, y)
$$

for every $x, y \in L$ is a generalized symmetric bi- f-derivations associated with a symmetric bi- f-derivation D.

Proof. For every $x, y, z \in L$, we have

$$
\begin{aligned}
\left(\Delta_{1} \vee \Delta_{2}\right)(x \wedge y, z)= & \Delta_{1}(x \wedge y, z) \vee \Delta_{2}(x \wedge y, z) \\
= & \left(\left(\Delta_{1}(x, z) \wedge f(y)\right) \vee(f(x) \wedge D(y, z))\right) \\
& \vee\left(\left(\Delta_{2}(x, z) \wedge f(y)\right) \vee(f(x) \wedge D(y, z))\right) \\
= & \left(\left(\left(\Delta_{1}(x, z) \wedge f(y)\right) \vee\left(\Delta_{2}(x, z) \wedge f(y)\right)\right)\right) \\
& \vee(f(x) \wedge D(y, z)) \\
= & \left(\Delta_{1}(x, z) \vee \Delta_{2}(x, z) \wedge f(y)\right) \vee(f(x) \wedge D(y, z)) \\
= & \left(\left(\Delta_{1} \vee \Delta_{2}\right)(x, z) \wedge f(y)\right) \vee(f(x) \wedge D(y, z)) .
\end{aligned}
$$

This completes the proof.
Definition 3.12. Let L be a distributive lattice and let Δ be a generalized symmetric bi- f-derivations associated with a symmetric bi-f-derivation D and let δ be a trace of Δ. If $x \leq y$ implies $\delta(x) \leq \delta(y)$ for every $x, y \in L$, then δ is called an isotone mapping.

Theorem 3.13. Let L be a distributive lattice with greatest element 1 and let f be a meet-homomorphism on L and let δ be a trace of generalized symmetric bi-f-derivation Δ associated with a symmetric bi- f-derivation D. Then the following conditions are equivalent.
(1) δ is an isotone mapping on L.
(2) $\delta(x)=f(x) \wedge \delta(1)$ for every $x \in L$.
(3) $\delta(x \wedge y)=\delta(x) \wedge \delta(y)$ for every $x, y \in L$.
(4) $\delta(x) \vee \delta(y) \leq \delta(x \vee y)$ for every $x, y \in L$.

Proof. (1) $\Rightarrow(2)$. Since d is isotone and $x \leq 1$, we have $\delta(x) \leq \delta(1)$. By Proposition 3.7(1), we obtain $\delta(x) \leq f(x)$, and so $\delta(x) \leq f(x) \wedge \delta(1)$. By Corollary 3.8(2), we have $f(x) \wedge \delta(1) \leq \delta(x)$. Hence we obtain $\delta(x)=$ $f(x) \wedge \delta(1)$ for all $x \in L$.
$(2) \Rightarrow(3)$. Let $\delta(x)=f(x) \wedge \delta(1)$ for all $x \in L$. Then we have

$$
\begin{aligned}
\delta(x \wedge y) & =f(x \wedge y) \wedge \delta(1)=(f(x) \wedge f(y)) \wedge(\delta(1) \wedge \delta(1)) \\
& =(f(x) \wedge \delta(1)) \wedge(f(y) \wedge \delta(1))=\delta(x) \wedge \delta(y)
\end{aligned}
$$

for all $x, y \in L$.
$(3) \Rightarrow(1)$. Let $\delta(x \wedge y)=\delta(x) \wedge \delta(y)$ and $x \leq y$. Then $\delta(x)=\delta(x \wedge y)=$ $\delta(x) \wedge \delta(y)$. Hence $\delta(x) \leq \delta(y)$ for every $x, y \in L$.
(1) \Rightarrow (4). Let δ be isotone. Since $x \leq x \vee y$ and $y \leq x \vee y, \delta(x) \leq$ $\delta(x \vee y)$ and $\delta(y) \leq \delta(x \vee y)$. Hence $\delta(x) \vee \delta(y) \leq \delta(x \vee y)$ for every $x, y \in L$.
(4) \Rightarrow (1). Let $x \leq y$. Since $\delta(x) \leq \delta(x \vee y)=\delta(y)$, which implies $\delta(x) \leq \delta(y)$ for every $w, x, y \in L$. Hence δ is isotone.

Definition 3.14. Let L be a lattice and Δ be a generalized symmetric bi- f-derivation associated with a symmetric bi- f-derivation D. If $x \leq w$ implies $\Delta(x, y) \leq \Delta(w, y)$ for every $w, x, y \in L$, then Δ is called a generalized isotone symmetric bi-f-derivation of L.

Theorem 3.15. Let L be a lattice with greatest element $1, \Delta$ a generalized symmetric bi-f-derivation associated with a symmetric bi-f-derivation D and let f be a meet-homomorphism on L. The following conditions are equivalent.
(1) Δ is a generalized isotone symmetric bi-f-derivation of L.
(2) $\Delta(x, y) \vee \Delta(w, y) \leq \Delta(x \vee w, y)$ for every $w, x, y \in L$.
(3) $\Delta(x, y)=f(x) \wedge \Delta(1, y)$ for every $x, y \in L$.
(4) $\Delta(x \wedge w, y)=\Delta(x, y) \wedge \Delta(w, y)$ for every $w, x, y \in L$.

Proof. (1) $\Rightarrow(2)$. Suppose that Δ is a generalized isotone symmetric bi- f-derivation. Since $x \leq x \vee w$ and $w \leq x \vee w$ for every $w, x, y \in L$, we obtain $\Delta(x, y) \leq \Delta(x \vee w, y)$ and $\Delta(w, y) \leq \Delta(x \vee w, y)$. Therefore, $\Delta(x, y) \vee \Delta(w, y) \leq \Delta(x \vee w, y)$.
$(2) \Rightarrow(1)$. Suppose that $\Delta(x, y) \vee \Delta(w, y) \leq \Delta(x \vee w, y)$ and $x \leq w$ for all $w, x, y \in L$. Then we have

$$
\Delta(x, y) \leq \Delta(x, y) \vee \Delta(w, y) \leq \Delta(x \vee w, y)=\Delta(w, y) .
$$

Hence Δ is a generalized isotone symmetric bi- f-derivation on L.
$(1) \Rightarrow(3)$. Suppose that Δ is a generalized isotone symmetric bi- f derivation. Since $\Delta(x, y) \leq \Delta(1, y)$, we have $\Delta(x, y) \leq f(x) \wedge \Delta(1, y)$ by Proposition 3.6 (1). Hence we have

$$
\Delta(x, y)=(\Delta(1, y) \wedge f(x)) \vee D(x, y)=\Delta(1, y) \wedge f(x)
$$

for every $x, y \in L$.
$(3) \Rightarrow(4)$. Suppose that $\Delta(x, y)=f(x) \wedge \Delta(1, y)$. Then we have

$$
\begin{aligned}
\Delta(x \wedge w, y) & =f(x \wedge w) \wedge \Delta(1, y) \\
& =f(x) \wedge f(w) \wedge D(1, y) \\
& =(f(x) \wedge D(1, y)) \wedge(f(w) \wedge D(1, y)) \\
& =D(x, y) \wedge D(w, y)
\end{aligned}
$$

for every $w, x, y \in L$.
(4) $\Rightarrow(1)$. Let $\Delta(x \wedge w, y)=\Delta(x, y) \wedge \Delta(w, y)$ and $x \leq w$. Then we have $\Delta(x, y)=\Delta(x \wedge w, y)=\Delta(x, y) \wedge \Delta(w, y)$. Therefore, $\Delta(x, y) \leq$ $\Delta(w, y)$ for every $w, x, y \in L$.

Let Δ be a generalized symmetric bi- f-derivation associated with a symmetric bi- f-derivation D and let δ be a trace of Δ and let d be a trace of D. For each $a \in L$ and define sets $F i x_{d}(L)$ and $F i x_{\delta}(L)$ by

$$
\operatorname{Fix}_{D}(L)=\{x \in L \mid D(x, a)=f(x)\}
$$

and

$$
\operatorname{Fix}_{\Delta}(L)=\{x \in L \mid \Delta(x, a)=f(x)\}
$$

Lemma 3.16. Let L be a lattice and let Δ be a generalized symmetric bi-f-derivation associated with a symmetric bi-f-derivation D. Then we have $\operatorname{Fix}_{D}(L) \subseteq \operatorname{Fix}_{\Delta}(L)$.

Proof. Let $x \in \operatorname{Fix}_{D}(L)$. Then we have $D(x, a)=f(x)$ for $a \in L$. Hence

$$
\begin{aligned}
\Delta(x, a) & =\Delta(x \wedge x, a)=(\Delta(x, a) \wedge f(x)) \vee(f(x) \wedge D(x, a)) \\
& =(\Delta(x, a) \wedge f(x)) \vee(f(x) \wedge f(x)) \\
& =(\Delta(x, a) \wedge f(x)) \vee f(x)=f(x)
\end{aligned}
$$

This implies $x \in F i x_{\Delta}(L)$, that is, $F i x_{D}(L) \subseteq F i x_{\Delta}(L)$.
Proposition 3.17. Let L be a distributive lattice and let Δ be a generalized symmetric bi-f-derivation associated with a symmetric bi-fderivation D. If f is isotone, $x \leq y$ and $y \in \operatorname{Fix}_{D}(L)$, then $x \in F i x_{\Delta}(L)$ for all $x, y \in L$.

Proof. Let $y \in \operatorname{Fix}_{D}(L)$. Then we get $D(y, a)=f(y)$. Hence we have

$$
\begin{aligned}
\Delta(x, a) & =\Delta(x \wedge y, a)=(\Delta(x, a) \wedge f(x)) \vee(f(x) \wedge D(y, a)) \\
& =(\Delta(x, a) \wedge f(x)) \vee(f(x) \wedge f(y))=(\Delta(x, a) \wedge f(x)) \vee f(x) \\
& =(\Delta(x, a) \vee f(x)) \wedge(f(x) \vee f(x))=f(x) \vee f(x)=f(x)
\end{aligned}
$$

This implies $x \in F i x_{\Delta}(L)$.

Definition 3.18. Let L be a lattice. The mapping Δ satisfying $\Delta(x \vee y, z)=\Delta(x, z) \vee \Delta(y, z)$ for all $x, y, z \in L$, is called a joinitive mapping on L.

Theorem 3.19. Let L be a lattice and let Δ be a generalized symmetric bi- f-derivation associated with a symmetric bi- f-derivation D. If f is a join-homomorphism on L and let Δ is joinitive, then $x, y \in F i x_{\Delta}(L)$ implies $x \vee y \in$ Fix $_{\Delta}(L)$.

Proof. Let $x, y \in \operatorname{Fix}_{\Delta}(L)$. Then $\Delta(x, a)=f(x)$ and $\Delta(y, a)=f(y)$. Hence $\Delta(x \vee y, a)=\Delta(x, a) \vee \Delta(y, a)=f(x) \vee f(y)=f(x \vee y)$, which implies $x \vee y \in F_{i x}(L)$.

Proposition 3.20. Let L be a lattice and let Δ be a generalized symmetric bi- f-derivation associated with a symmetric bi-f-derivation D. If f is a meet-homomorphism on L and $x \in \operatorname{Fix}_{\Delta}(L)$ and $y \in \operatorname{Fix}_{D}(L)$, we have $x \wedge y \in \operatorname{Fix}_{\Delta}(L)$ for all $x, y \in L$.

Proof. Let $x \in \operatorname{Fix}_{\Delta}(L)$ and $y \in \operatorname{Fix}_{D}(L)$. Then $f(x)=\Delta(x, a)$ and $f(y)=D(y, a)$. Hence we have

$$
\begin{aligned}
\Delta(x \wedge y, a) & =(\Delta(x, a) \wedge f(y)) \vee(f(x) \wedge D(y, a)) \\
& =(f(x) \wedge f(y)) \vee(f(x) \wedge f(y)) \\
& =f(x) \wedge f(y)=f(x \wedge y) .
\end{aligned}
$$

Hence $x \wedge y \in$ Fix $_{\Delta}(L)$.
Proposition 3.21. Let L be a lattice and let Δ be a generalized symmetric bi-f-derivation associated with a symmetric bi- f-derivation D. Then, for every $w, x, y \in L$, the following identities hold.
(1) If Δ is a generalized isotone symmetric bi-f-derivation, then

$$
\Delta(x, y)=D(x, y) \vee(\Delta(x \vee w, y) \wedge f(x))
$$

for every $w, x, y \in L$.
(2) If f is a join-homomorphism on L, then

$$
\Delta(x, y)=D(x, y) \vee(\Delta(x \vee w, y) \wedge f(x))
$$

for every $w, x, y \in L$.
(3) If $f(x)$ is an increasing function, then

$$
\Delta(x, y)=D(x, y) \vee(f(x) \wedge \Delta(x \vee w, y))
$$

for every $w, x, y \in L$.

Proof. (1) Let Δ be a generalized isotone symmetric bi- f-derivation. Then we have

$$
\begin{aligned}
\Delta(x, y) & =\Delta((x \vee w) \wedge x, y) \\
& =(\Delta(x \vee w, y) \wedge f(x)) \vee(f(x \vee w) \wedge D(x, y)) \\
& =(\Delta(x \vee w, y) \wedge f(x)) \vee D(x, y)
\end{aligned}
$$

since $D(x, y) \leq \Delta(x, y) \leq \Delta(x \vee w, y) \leq f(x \vee w)$ for every $w, x, y \in L$.
(2) Since $D(x, y) \leq f(x) \leq f(x) \vee f(w)$ and $f(x \vee w)=f(x) \vee f(w)$, we obtain

$$
\begin{aligned}
\Delta(x, y) & =\Delta((x \vee w) \wedge x, y) \\
& =(\Delta(x \vee w, y) \wedge f(x)) \vee(f(x \vee w) \wedge D(x, y)) \\
& =(\Delta(x \vee w, y) \wedge f(x)) \vee D(x, y)
\end{aligned}
$$

for every $w, x, y \in L$.
(3) Since f is an increasing function and $x \leq x \vee w$, we have $D(x, y) \leq$ $f(x) \leq f(x \vee w)$ and so,

$$
\begin{aligned}
\Delta(x, y) & =\Delta((x \vee w) \wedge x, y) \\
& =(\Delta(x \vee w, y) \wedge f(x)) \vee(f(x \vee w) \wedge D(x, y)) \\
& =(\Delta(x \vee w, y) \wedge f(x)) \vee D(x, y)
\end{aligned}
$$

for every $w, x, y \in L$.

References

[1] G. Birkhoof, Lattice Theory, American Mathematical Society Colloquium, 1940.
[2] Y. Ceven, Symmetric bi-derivations of lattice, Quaest. Math., 32 (2009), no. 1-2, 241-245.
[3] Y. Ceven and M. A. Oztürk, On f-derivations of lattice, Bull. Korean Math. Soc., 45 (2008), no. 4, 701-707.
[4] L. Ferrari, On derivations of lattices, Pure math. appl., 12 (2001), no. 4, 365-382.
[5] S. Harmaitree and Utsanee Leerawat, The generalized f-derivations of lattices, Scientiae Magna, 7 (2011), no. 1, 114-120.
[6] B. Hvala, Generalized derivation in rings, Commun. Algebra., 26 (1998), no. 4, 1147-1166.
[7] M. A. Öztürk, H. Yazarh and K. H. Kim, Permuting tri-derivations in lattices, Quaest. Math., 32 (2009), no. 3, 415-425.
[8] H. Yazarh and M. A. Öztürk, Permuting tri-f-derivations in lattices, Commun. Korean Math. Soc., 26 (2011), no. 13-21.
[9] A. R. Khan and M. A. Chaudhry, Permuting f-derivations on lattices, Int. J. Algebra., 5 (2011), 471-481.
[10] F. Karacal, On the direct decomposability of strong negations and S-implication operators on product lattices, Inf. Sci., 176 (2006), 3011-3025.
[11] K. H. Kim, Symmetric bi-f-derivations in lattices, Int. J. Math. Arch., 3 (2012), no. 10, 3676-3683.
[12] E. Posner, Derivations in prime rings, Proc. Am. Math. Soc., 8 (1957), 10931100.
[13] G. Szász, Derivations of lattices, Acta Sci. Math. (Szeged), 37 (1975), 149-154.
[14] X. L. Xin, T. Y. Li and J. H. Lu, On derivations of lattices, Inf. Sci., 178 (2008), no. 2, 307-316.

Kyung Ho Kim

Department of Mathematics,
Korea National University of Transportation
Chungju 27469, Republic of Korea
E-mail: ghkim@ut.ac.kr

[^0]: Received April 19, 2022; Accepted May 25, 2022.
 2010 Mathematics Subject Classification: 16Y30, 03G25.
 Key words and phrases: Lattice, generalized symmetric bi-f-derivation, isotone, $\operatorname{Fix}_{d}(L)$, joinitive.

 This was supported by Korea National University of Transportation in 2022.

