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ON ORTHOGONAL REVERSE DERIVATIONS OF

SEMIPRIME Γ-SEMIRINGS

Kyung Ho Kim

Abstract. In this paper, we introduce the notion of orthogonal re-
serve derivation on semiprime Γ-semirings. Some characterizations
of semiprime Γ-semirimgs are obtained by means of orthogonal re-
verse derivations. We also investigate conditions for two reverse
derivations on semiprime Γ-semiring to be orthogonal.

1. Introduction

The notion of semiring was first introduced in 1934 by H. S. Vandiver.
A semiring is an algebraic structure consisting of a nonempty set S
on which we have defined two associative binary operations addition
(usually denoted by +) and multiplication (usually, ·) such that the
multiplication is distributive over addition. The notion of rings with
derivations is quite old and plays a significant role in the integration of
analysis, algebraic geometry, and algebra. The study of derivations in
rings though initiated long back, but got interested only after Posner
who 1957 established two very striking results on derivations in prime
rings. In this section, we review results on reverse derivations. The
reverse derivations on semiprime rings has been studied by Samman and
Alyamani [4]. Here the authors obtain some results of semiprime rings
by reverse derivations. Also, Kalyan Kumar Dey, Akhil Chandra Paul
and Isamiddin S. Rakhimov [3] studied orthogonal reverse derivations on
semiprime Γ-rings and N. N. Sulaiman, and A. R. H. Majeed [5] studied
orthogonal derivations on ideals of semiprime Γ-rings.

In this paper, we introduce the notion of orthogonal reserve derivation
on semiprime Γ-semirings and generalized [3, 5]. Some characterizations
of semiprime Γ-semirings are obtained by means of orthogonal reverse
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derivations. We also investigate conditions for two reverse derivations
on semiprime Γ-semiring to be orthogonal.

2. Γ-Semirings

Let M and Γ be additive abelian groups with identity 0 and 0′. If there
exists a mapping M ×Γ×M →M satisfying, for every x, y, z ∈M and
α, β, µ ∈ Γ, the following conditions :

(ΓS1) xβ(yµz) = (xβy)µz,
(ΓS2) xβ(y + z) = xβy + xβz,
(ΓS3) x(β + µ)y = xβy + xµy and (x+ y)βz = xβz + yβz,
(ΓS4) xα0 = 0αx = 0 and x0′y = 0, then M is called a Γ-semiring.

Definition 2.1. A Γ-semiring M is called a weak Γ-semiring if it is
also a M -semiring.

Example 2.2. Let S be a semiring with multiplicative identity and
Mm×n(S) be the set all m× n matrices over S, clearly, Mm×n(S) is not
closed with respect to usual multiplication of matrices.

Let M = Mm×n(S) and Γ = Mn×m(S). Then we can observe that M
is a Γ-semiring and Γ is a M -semiring. Let A ∈M,α ∈ Γ, B ∈M. Then
AαB is a matrix of order m × n matrices over S, and so which implies
that AαB ∈ Mm×n(S) = M. Similarly, if α, β ∈ Mm×n(S) = Γ and
A ∈Mn×m(S) = M, then αAβ ∈ Γ. The other axioms of Γ-semiring can
also be observed easily. Similarly, Γ is a M -semiring, and hence (M,Γ)
is also (Γ,M)-semiring. Clearly, M ane Γ are not semirings with respect
to usual addition and multiplication of matrices.

Let S be a semiring with 0 and M = M1×2(S) and

Γ =

{
n

(
1
0

)
: n ∈ Z+

}
.

Then M is a Γ-semiring, but Γ is not a M -semiring. Let M = Mm×n(S)
and Γ = Mn×m(Z+) = Mn×m(N). Then M is a Γ-semiring.

Example 2.3. Every semiring S is a weak Γ-semiring with Γ = S.

Definition 2.4. A Γ-semiring (M,+, ·) is said to be additively com-
mutative if (M,+) is a commutative semigroup. A Γ-semiring (M,+, ·)
is said to be multiplicatively commutative if (M, ·) is a commutative
semigroup. It is said to be commutative if both (M,+) and (M, ·) are
commutative.
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Definition 2.5. Let M be a Γ-semiring. An element a in M is said
to be additively left cancellative if a+ b = a+ c implies b = c, for every
b, c ∈ M. It is said to be additively right cancellative if b + a = c + a
implies b = c. It is said to be additively cancellative if it is both left and
right cancellative. A Γ-semiring M is said to be additively cancellative
if all elements in M are additively cancellative.

Definition 2.6. Let M be a Γ-semiring. Then

(D1) M is said to be prime if aΓMΓb = 0 implies a = 0, or b = 0 for all
a, b ∈M.

(D2) M is said to be semiprime if aΓMΓa = 0 implies a = 0, for all
a ∈M.

(D3) M is said to be 2-torsion free if 2a = 0 implies a = 0 for all a ∈M.

Definition 2.7. Let M be a Γ-semiring. An additive mapping d :
M → M is called a derivation if d(xαy) = d(x)αy + xαd(y) for all
x, y ∈M and α ∈ Γ.

Example 2.8. Let S be a semiring and d : S → S be a derivation

on S. Let M = M1×2(S) and Γ =

{(
n · 1

0

)
: n ∈ Z+

}
. Then M is a

Γ-semiring. Now, define D : M →M by D(x y) = (d(x) d(y)). Since

(x y)

(
n · 1

0

)
(a b) = (nxa nxb),

D is a Γ-derivation on M. Indeed,

D((x y)

(
0 0
b 0

)
(a b))

= D(nxa nxb)

= (nd(xa) nd(xb))

= (nd(x)a+ nxd(a) nd(x)b+ nxd(b))

= (nd(x)a nd(x)b) + (nxd(a) nxd(b))

= (d(x) d(y))

(
n · 1

0

)
(a b) + (x y)

(
n · 1

0

)
(d(a) d(b))

= D(x y)

(
n · 1

0

)
(a b) + (x y)

(
n · 1

0

)
D(a b)

for all x, y, a, b ∈ S and n ∈ Z+.

Definition 2.9. Let M be a Γ-semiring. Any nonempty subset I is
called a left ideal of M if the following conditions are satisfied :

(1) a, b ∈ I ⇒ a+ b ∈ I,
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(2) a ∈ I and s ∈M ⇒ sαa ∈ I, for every α ∈ Γ.

Similarly, we can define right and two-sided ideal in a Γ-semiring.

3. Orthogonal reverse derivations of semiprime Γ-semirings

Throughout this paper, we assume that M is a Γ-semiring with ad-
ditive identity 0 and addition is commutative.

Definition 3.1. Let M be a Γ-semiring. An additive mapping d :
M → M is a reverse derivation if d(xαy) = d(y)αx + yαd(x) for all
x, y ∈ M and α ∈ Γ. Also, additive mapping d : M → M is called a
Jordan derivation if d(xαx) = d(x)αx+xαd(x) for all x ∈M and α ∈ Γ.

Obviously, if M is commutative Γ-semiring, then both reverse deriva-
tion and derivation of M are the same. It can be easily seen that the
reverse derivation is not a derivation, in general, but it is a Jordan
derivation.

Example 3.2. Let R be an associative ring with 1 and let d : R→ R
be a reverse derivation. Consider M = M1×2(R) and

Γ =

{(
n · 1

0

)
: n ∈ Z+

}
.

Then it is clear that M is a Γ-semiring. Let N = {(x x)|x ∈ R} ⊂ M.
Then N is a subsemiring of M. Define a self-map D : N → N by

D(x x) = (d(x) d(x)).

Let a = (x1 x1), b = (x2 x2) and α =

(
n · 1

0

)
∈ Γ. Then we have

D(a b) = D((x1 x1)

(
n · 1

0

)
(x2 x2))

= D(x1nx2 x1nx2)

= (d(x2)nx1 + x2nd(x1) d(x2)nx1 + x2nd(x1))

= (d(x2)nx1 + d(x2)nx1 x2nd(x1) + x2nd(x1))

= (d(x2) d(x2))
(
n · 1

0

)
(x1 x1) + (x2 x2)

(
n · 1

0

)
(d(x1) d(x1))

= D((x2 x2))αa+ bαD((x1 x1))

= D(b)αa+ bαD(a).

Hence D is a reverse derivation on M.
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Proposition 3.3. Let d be a reverse derivation of M. Then the
following conditions hold :

(1) If M is a Γ-semiring with characteristic 2, then d2 is a derivation
of M.

(2) Let M is additively cancellative. If e is an idempotent element of
M, then eαd(e)αe = 0.

Proof. (1) Let d be a reverse derivation of M. Then we have

d2(xαy) = d(d(xαy)) = d(d(y)αx+ yαd(x))

= d(x)αd(y) + xαd2(y) + d2(x)αy + d(x)αd(y)

= d2(x)αy + xαd2(y),

which implies that d2 is a usual derivation of M, for every x, y ∈M and
α ∈ Γ.

(2) Let e is an idempotent element of M. Then we have d(e) =
d(eαe) = d(e)αe + eαd(e). Multiplying by e in equation on left, we ob-
tain eαd(e) = eαd(e)αe+ eαeαd(e). Also, multiplying by e in equation
on right, we have eαd(e)αe = eαd(e)αeαe + eαeαd(e)αe = eαd(e)αe +
eαd(e)αe, i.e., eαd(e)αe = 0.

Proposition 3.4. Let d be a reverse derivation of a prime Γ-semiring
M and let a ∈M. If aαd(x) = 0, for every x ∈M and α ∈ Γ, then a = 0
or d is zero.

Proof. Let aαd(x) = 0, for every x ∈M and α, β ∈ Γ. Then replacing
x by xβy, we have

0 = aα(d(xβy)) = aα(d(y)βx+ yβd(x)

= aαd(y)βx+ aαyβd(x) = aαyβd(x),

for every x, y ∈ M and α, β ∈ Γ. Since M is a prime Γ-semiring, if
d(x) 6= 0, for some x ∈M, then a = 0.

Now, we give the derivation of orthogonality of two reverse deriva-
tions.

Definition 3.5. Let d and g be two reverse derivations on M. Then
d and g are said to be orthogonal if d(x)ΓMΓg(y) = 0 = g(x)ΓMΓd(y),
for all x, y ∈M.

Example 3.6. Let M1 be a Γ1-semiring and M2 be a Γ2-semiring.
ConsiderM = M1×M2 and Γ = Γ1×Γ2. The addition and multiplication
on M and Γ are defined as follows :

(a, b) + (c, d) = (a+ c, b+ d) and (a, b)(α, β)(c, d) = (aαc, bβd),
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for every a, c ∈ M1, b, d ∈ M2, α ∈ Γ1 and β ∈ Γ2. Under these opera-
tions, M1 is a Γ-semiring. Let d1 be a reverse derivation on M. Define a
derivation d on M by d((a, b)) = (d1(a), 0). Then d is a reverse deriva-
tion on M. Let d2 be a reverse derivation on M2. Define a derivation g
on M by g((a, b)) = (0, d2(b)). Then g is a reverse derivation on M. It
is clear that d and g are orthogonal reverse derivation on M.

We start this section by some observations which are useful in proving
our main results.

Lemma 3.7. Let M be a 2-torsion free semiprime Γ-semiring and
a, b ∈M. Then the following conditions are equivalent :

(1) aΓxΓb = 0,
(2) bΓxΓa = 0,
(3) aΓxΓb+ bΓxΓa = 0, for every x ∈M.

Also, if one of these conditions is fulfilled, then aΓb = bΓa = 0.

Proof. (1) ⇒ (2). Let aΓxΓb = 0, for every a, b, x ∈ M. Multiply-
ing by bΓx on left side and multiplying by xΓa on right side, we have
bΓxΓaΓxΓbΓxΓa = 0. Since M is semiprime, we have bΓxΓa = 0.

(2) ⇒ (3). Let bΓxΓa = 0. Multiplying by aΓx, on left side and
multiplying by xΓb, on right side, we have aΓxΓbΓxΓaΓxΓb = 0. Since
M is semiprime, we have aΓxΓb = 0, which implies aΓxΓb+ bΓxΓa = 0.

(3)⇒ (1). Let aΓxΓb+bΓxΓa = 0, for every x, a, b ∈M. Multiplying
by bΓx on left side, we have bΓxΓ(aΓxΓb) + bΓxΓ(bΓxΓa) = 0. Also,
multiplying by aΓx on left side, we get

(aΓxΓb)ΓxΓ(aΓxΓb) + (aΓxΓb)ΓxΓ(bΓxΓa) = 0. (a)

Furthermore, the equation aΓxΓb = 0 multiplication by xΓa on right
side, we have (aΓxΓb)ΓxΓa + (bΓxΓa)ΓxΓa = 0. Also, multiplying by
xΓb, on right side, we get

(aΓxΓb)ΓxΓ(aΓxΓb) + (bΓxΓa)ΓxΓ(aΓxΓb) = 0. (b)

Adding equation (a) to (b) and using (3), we have

2((aΓxΓb)ΓxΓ(aΓxΓb)) = 0.

Since M is 2-torsion free and M is semiprime, we have aΓxΓb = 0, for
all x ∈M.

Remark 3.8. Let aΓxΓb = 0. Multiplying by b on left side and
multiplying by a on right side, we have (bΓa)ΓxΓ(bΓa) = 0. Since M is
semiprime, we have bΓa = 0. Similarly, from bΓxΓa = 0, we can prove
that aΓb = 0.
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Lemma 3.9. Let M be a 2-torsion free semiprime Γ-semiring. Sup-
pose that additive mappings of d and g of M into itself satisfy

d(x)ΓMΓg(x) = 0,

for any x ∈M. Then d(x)ΓMΓg(y) = 0, for every x, y ∈M.

Proof. Suppose that d(x)αmβg(x) = 0, for any x,m ∈M and α, β ∈
Γ. Replacing x by x+ y, we have

0 = d(x+ y)αmβg(x+ y)

= d(x)αmβg(x) + d(x)αmβg(y) + d(y)αmβg(x) + d(y)αmβg(y)

= d(x)αmβg(y) + d(y)αmβg(x).

Also, multiplying d(x)αmβg(y) on right side of the last equation, we
have

0 = (d(x)αmβg(y))γnδ(d(x)αmβg(y))

+ d(x)αmβ(g(y)γnδ(d(y))αmβg(x).

By Remark 3.8, we have (d(x)αmβg(y))γnδ(d(x)αmβg(y)) = 0. Since
M is semiprime, we get d(x)αmβg(y) = 0, for every x, y,m, n ∈M and
α, β, γ, δ ∈ Γ.

Theorem 3.10. Let M be a 2-torsion free semiprime Γ-semiring and
d and g be reverse derivations. Then for all x, y ∈M ,

d(x)Γg(y) + g(x)Γd(y) = 0, (c)

if and only if d and g are orthogonal.

Proof. Suppose that d(x)αg(y) + g(x)αd(y) = 0, for every x, y ∈ M
and α ∈ Γ. Replacing y by xβy in (c), we have

0 = d(x)αg(xβy) + g(x)αd(xβy)

= d(x)αg(y)βx+ yβg(x) + g(x)αd(y)βx+ yβd(x)

= (d(x)αg(y) + g(x)αd(y))βx+ d(x)αyβg(x) + g(x)αyβd(x)

for every x, y ∈M and α, β ∈ Γ. By hypothesis,

d(x)αyβg(x) + g(x)αyβd(x) = 0,

and so by Lemma 3.7, we have d(x)αyβg(x) = 0 = g(x)αyβd(x), for
every x ∈M and α, β ∈ Γ.Hence, by Lemma 3.9, we get d(x)ΓMΓg(z) =
0 = g(x)ΓMΓd(z), which implies d(x)ΓMΓg(y) = g(x)ΓMΓd(y) = 0 for
any x, y, z ∈M and α, β ∈ Γ. This proves that d and g are orthogonal.

Conversely, assume that d and g are orthogonal. Then we have
d(x)Γg(y) = g(y)Γd(x) = 0. By Remark 3.8, d(x)Γg(y) = g(x)Γd(y) =
0, which implies that d(x)Γg(y) + g(x)Γd(y) = 0, for all x, y ∈M.
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Remark 3.11. Suppose that d and g are reverse derivations of a
Γ-semiring M. Then the following identities are immediate from the
definition of reverse derivations.

(dg)(xαy) = d(g(xαy)) = d(g(y)αx+ yαg(x)

= (dg)(x)αy + d(x)αg(y) + g(x)αd(y) + xα(dg)(y), (d)

for any x, y ∈M.
Similarly, we have

(gd)(xαy) = g(d(xαy)) = g(d(y)αx+ yαd(x)

= (gd)(x)αy + g(x)αd(y) + d(x)αg(y) + xα(gd)(y), (e)

for any x, y ∈M and α ∈ Γ.

The following theorem gives a few criteria on the orthogonality of
reverse derivations.

Theorem 3.12. Let M be a 2-torsion free semiprime Γ-semiring and
d and g be reverse derivations. Then d and g are orthogonal if and only
if dg = 0.

Proof. Suppose that dg = 0. Then by using the identity (c) in the
Remark 3.11, we obtain d(x)αg(y) + g(x)αd(y) = 0, for every x, y ∈M
and α ∈ Γ. Therefore, by Theorem 3.10, d and g are orthogonal.

Conversely, since d and g are orthogonal, we have d(x)ΓMΓg(z) = 0.
Hence we get

0 = d(d(x)αyβg(z)) = d(yβg(z))αd(x) + yβg(z)αd(d(x))

= (dg)(z)βyαd(x) + g(z)βd(y)αd(x) + yβg(z)αd(d(x))

= (dg)(z)βyαd(x)

for every x, y, z ∈ M and α, β ∈ Γ. Replacing x by g(z), we have
(dg)(z)βyα(dg)(z) = 0, for any z ∈M. Since M is semiprime, we obtain
(dg)(z) = 0, for every z ∈M, that is dg = 0.

Theorem 3.13. Let M be a 2-torsion free semiprime Γ-semiring and
d and g be reverse derivations. Then d and g are orthogonal if and only
if dg + gd = 0.

Proof. Suppose that dg + gd = 0. Then we have

0 = (dg + gd)(xαy)

= (dg)(x)αy + d(x)αg(y) + g(x)αd(y) + α(dg)(y) + (gd)(x)αy

+ g(x)αd(x) + d(x)αg(y) + xα(gd)(y)

= (dg + gd)(x)αy + 2d(x)αg(y) + 2g(x)αd(y) + xα((dg)(y) + (gd)(y)),
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for every x, y ∈ M and α ∈ Γ. Since M is 2-torsion free, we obtain
d(x)αg(y) + g(x)αd(y) = 0, and so by Theorem 3.10, d and g are or-
thogonal.

Conversely, let d and g be orthogonal reverse derivations. By Theo-
rem 3.10, dg = gd = 0. Hence dg + gd = 0.

Theorem 3.14. Let M be a 2-torsion free semiprime Γ-semiring and
d and g be reverse derivations. Then d and g are orthogonal if and only
if dg is a derivation of M.

Proof. Suppose that dg is a derivation on M. Then we have

(dg)(xαy) = (dg)(x)αy + xα(dg)(y).

Comparing this expression with (d) of Remark 3.11, we obtain

d(x)αg(y) + g(x)αd(y) = 0,

and so by Theorem 3.10, d and g are orthogonal.
Conversely, if d and g are orthogonal, by Theorem 3.12, dg = 0. Thus

dg is a derivation of M.

Theorem 3.15. LetM be a 2-torsion free semiprime, additively can-
cellative Γ-semiring and d be a reverse derivation of M. If d2 is a deriva-
tion of M, then d = 0.

Proof. Since d2 is a derivation of M, we have d2(xαy) = d2(x)αy +
xαd2(y) and

d2(xαy) = d(d(xαy)) = d(d(y)αx+ yαd(x))

= d(x)αd(y) + d(x)αd(y) + xαd2(y) + d2(x)αy

= 2d(x)αd(y) + d2(x)αy + xαd2(y).

Hence we have 2d(x)αd(y) = 0. Since M is 2-torsion free semiprime, we
get d(x)αd(y) = 0, for any x, y ∈M and α ∈ Γ. Replacing x by sβx, we
have

0 = d(sβx)αd(y) = (d(x)βs+ xβd(s))αd(y) = d(x)βsαd(y).

for all x, s ∈M,β ∈ Γ. Replacing y by x+ y, we have

0 = d(x)βsαd(x+ y)

= d(x)βsα(d(x) + d(y))

= d(x)βsαd(x) + d(x)βsαd(y) = d(x)βsαd(x).

Since M is semiprime, we obtain d(x) = 0, for any x ∈M i.e., d = 0.
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