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SPACES OF BMO TYPE

Young Ja Park

Abstract. It is presented a Banach space of functions of bounded
mean oscillation BMO type.

1. Introduction

The space of functions of bounded mean oscillation, or BMO, natu-
rally arises as a class of functions whose deviation from their means over
cubes is bounded. In fact, the classical BMO-norm ‖f‖BMO for the
equivalent class of a locally integrable function f on Rd (f ∈ L1

loc(Rd))
is defined as

‖f‖BMO := sup
Q

1

|Q|

∫
Q
|f(x)− fQ|dx(1.1)

for every cube Q ⊂ Rd whose sides are parallel to the axes and

fQ :=
1

|Q|

∫
Q
f(x)dx.

The space BMO first appeared in the work of John and Nirenberg
[1] in the context of nonlinear partial differential equations that emerge
in the study of minimal surfaces.

Even though the Lebesgue space L∞ functions have the same prop-
erty, there exist unbounded functions with bounded mean oscillation.
Such functions are slowly growing, and typically have at most logarith-
mic blow-up. The space BMO shares similar properties with the space
L∞, and it often serves as a substitute for it. For instance, classical
singular integrals do not map L∞ to L∞ but L∞ to BMO. In many
instances the interpolation between Lp and BMO works just as well
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between Lp and L∞. Indeed, the role of the space BMO is deeper and
more far-reaching than that [6]. This space crucially arises in many situ-
ations in analysis, such as in the characterization of the L2-boundedness
of non-convolution singular integral operators with standard kernels.

Recently, we have built up a new function space in order to gen-
eralize the classical Lebesgue spaces [3, 4, 5]. The motivation of this
research stems from taking a close look at the Lp-norm: ‖f‖Lp =(∫
X |f(x)|p dµ

)1/p
of the Lebesgue spaces Lp(X), 1 ≤ p < ∞. It can

be rewritten as

‖f‖Lp := α−1
(∫

X
α(|f(x)|) dµ

)
, f ∈ Lp(X)(1.2)

with the base function α as

α(x) := xp.

By virtue of the John-Nirenberg inequality, it is well-known that the
classical BMO-norm (1.1) is equivalent to the Lp characterization of
BMO-norm ‖ · ‖BMOp defined by

‖f‖BMOp :=

(
sup
Q

1

|Q|

∫
Q
|f(x)− fQ|pdx

) 1
p

, (f ∈ L1
loc(Rd))(1.3)

for 1 < p <∞.
In the same line of our research we introduce a functional

‖f‖BMOα := α−1

(
sup
Q

1

|Q|

∫
Q
α(|f(x)− fQ|)dx

)
, (f ∈ L1

loc(Rd))(1.4)

for an appropriate base function α. The main point of this report is
to present sufficient conditions of base functions α such that ‖ · ‖BMOα

forms a (quisi-)norm, so it constitutes a natural Banach space BMOα.
The base functions α which we have developed include base functions

of the form α(x) = xp, and we designate the base functions α to achieve
the Minkowski type triangle inequality. This research was inspired by
[2].

2. The main theorem and arguments

We have been developed appropriate base functions that permit the
Hölder type inequality. In this section, we briefly introduce the concepts
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of admissable base functions - the details can be found in [3, 4]. The no-
tions presented here are modified versions without essential differences.
In the following, R̄+ represents {x ∈ R : x ≥ 0}.

Let α, β : R̄+ → R̄+ be strictly increasing absolutely continuous
functions. The pair (α, β) is called a pre-Hölder pair if it obeys

(2.1) α−1(x)β−1(x) = x

for all x ∈ R̄+. In the relation (2.1), the notations α−1, β−1 are the
inverse functions of α, β, respectively. Some examples of pre-Hölder
pairs are:

(α(x), β(x)) = (xp, xq)

for p > 1 with 1
p + 1

q = 1, and

(2.2) (α, β) := (λ ◦A, λ ◦ Ã)

where we set λ(x) = A−1(x)Ã−1(x) for any Orlicz N -function A together

with its complementary N -function Ã.

In the following, Q stands for a cube whose sides are parallel to the
axes and |A| is the Lebesgue measure of the set A in Rd, d ≥ 1. We
state the main theorem.

Theorem 2.1. Let ~ > 0 be given. Suppose that (α, β) is a pre-
Hölder pair such that for any positive constants a, b > 0, there exist
constants θ1, θ2 and θf (depending on a and b) satisfying the following
two conditions;

θ1 + θ2 + θf ≤ ~
and

α−1(x)β−1(y) ≤ θ1
ab

α(a)
x+ θ2

ab

β(b)
y + ab θf(2.3)

for all (x, y) ∈ R̄+ × R̄+. Then the functional

‖f‖BMOα := α−1

(
sup
Q

1

|Q|

∫
Q
α(|f(x)− fQ|)dx

)
(2.4)

satisfies a Minkowski type inequality : for any locally integrable func-
tions f and g, we have

‖f + g‖BMOα ≤ ~ {‖f‖BMOα + ‖g‖BMOα}(2.5)
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if the right hand side is finite. Also, for any constant k ≥ 0 and for a
locally integrable function f , we obtain

k

~
‖f‖BMOα ≤ ‖kf‖BMOα ≤ k~‖f‖BMOα .

In particular, when ~ = 1, we have the homogeneity:

‖kf‖BMOα = k‖f‖BMOα .

For example, any (convex) function satisfying

α(x) :=

{
xp for 0 ≤ x ≤ 1
xq for sufficiently large x

(2.6)

(1 < p, q < ∞) obeys the conditions in Theorem 2.1, and so are many
variants of (2.6).

For a locally integrable function f on Rd, we let

fQ =
1

|Q|

∫
Q
f(x)dx := −

∫
Q
f(x)dx.

Let α be a pre-Hölder function. We denote a class of functions by

BMOα(Rd) =
{
f ∈ L1

loc(Rd) : ‖f‖BMOα <∞
}
,

where we set

‖f‖BMOα = α−1

(
sup
Q
−
∫
Q
α(|f(x)− fQ|)dx

)
.

When α is the identity function, we write BMOα(Rd) := BMO(Rd). In
the sequel, the elements of BMOα(Rd) whose difference is a constant
are identified. Note that even though we define ‖ · ‖BMOα on abstract
measure spaces, we restrict our attention to the Euclidean space Rd
equipped with Lebesgue measure.

We now present the proof.

Proof of Theorem 2.1. We first present a Hölder type inequality: for
any f, g ∈ BMOα(Rd), we have

∣∣∣∣−∫
Q
f(x)g(x) dx

∣∣∣∣ ≤ ~α−1
(

sup
Q
−
∫
Q
α(|f(x)|)dx

)
β−1

(
sup
Q
−
∫
Q
β(|g(x)|)dx

)
,

(2.7)

where Q is a cube whose sides are parallel to the axes.
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For the proof of (2.7), we may assume that the right hand side of
(2.7) is finite. We put

a := α−1

(
sup
Q
−
∫
Q
α(|f(x)|)dx

)
, b := β−1

(
sup
Q
−
∫
Q
β(|g(x)|)dx

)
.

Then there exist constants θ1, θ2 and θf such that θ1 + θ2 + θf ≤ ~ and

|f(x)g(x)| = α−1(α(|f(x)|))β−1(β(|g(x)|))

≤ θ1
ab

α(a)
α(|f(x)|) + θ2

ab

β(b)
β(|g(x)|) + abθf .(2.8)

Integrating over Q and dividing both sides by |Q| yield

−
∫
Q
|f(x)g(x)| dx ≤ θ1

ab

α(a)
−
∫
K
α(|f(x)|) dx+ θ2

ab

β(b)
−
∫
Q
β(|g(x)|) dx

+ θfab −
∫
Q
dx

≤ ~α−1
(

sup
Q
−
∫
Q
α(|f(x)|)dx

)
β−1

(
sup
Q
−
∫
Q
β(|g(x)|)dx

)
.

This implies the Hölder type inequality (2.7).

We now verify the Minkowski type inequality (2.5). In fact, without
loss of generality, we may assume that f(x) + g(x) 6= 0 almost every
x ∈ Rd by restricting the domain Rd if necessary. Applying Hölder type
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inequality (2.7), we obtain

−
∫
Q
α(|f(x) + g(x)− fQ − gQ|) dx

≤ ~ α−1
(

sup
Q
−
∫
Q
α(|f(x)− fQ|) dx

)

× β−1
(

sup
Q
−
∫
Q
β

(
α(|f(x)− fQ + g(x)− gQ|)
|f(x)− fQ + g(x)− gQ|

)
dx

)

+ ~ β−1
(

sup
Q
−
∫
Q
β(|g(x)− gQ|) dx

)

× β−1
(

sup
Q
−
∫
Q
β

(
α(|f(x)− fQ + g(x)− gQ|)
|f(x)− fQ + g(x)− gQ|

)
dx

)
= ~(‖f‖BMOα + ‖g‖BMOα)

× β−1
(

sup
Q
−
∫
Q
β

(
α(|f(x)− fQ + g(x)− gQ|)
|f(x)− fQ + g(x)− gQ|

)
dx

)

= ~(‖f‖BMOα + ‖g‖BMOα)β−1

(
sup
Q
−
∫
Q
α(|f(x)− fQ + g(x)− gQ|) dx

)
.

The last equality follows from the fact that

α(x) = β

(
α(x)

x

)
.(2.9)

In fact, we solve for β−1(x) in the conjugate identity α−1(x)β−1(x) = x

to get β−1(x) =
x

α−1(x)
, which in turn yields

x = β

(
x

α−1(x)

)
.

This illustrates the identity (2.9). Therefore we obtain

α(‖f + g‖BMOα)

β−1(α(‖f + g‖BMOα))
≤ ‖f‖BMOα + ‖g‖BMOα .(2.10)

From a variance of the conjugate identity: α−1(x) =
x

β−1(x)
, we have

x =
α(x)

β−1(α(x))
.(2.11)
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Hence from (2.10), we conclude the Minkowski type inequality (2.5):

‖f + g‖BMOα ≤ ‖f‖BMOα + ‖g‖BMOα .

We now verify that for any constant k ≥ 0 and for f ∈ BMOα(Rd),
we have

k

~
‖f‖BMOα ≤ ‖kf‖BMOα ≤ k~‖f‖BMOα .(2.12)

For each f ∈ BMOα(Rd), the associated operator (inhomogeneous)
norm of f is defined by

‖f‖∗ :=sup


∣∣∣supQ−

∫
Q(f(x)−fQ)g(x)dx

∣∣∣
β−1

(
supQ−

∫
Q β(|g(x)|)dx

) :g(x) 6= 0 almost everywhere

 .

(2.13)

Then we note that for any constant k ≥ 0,

‖kf‖∗ = k‖f‖∗(2.14)

and by virtue of the Hölder type inequality (2.7), we have∣∣∣supQ−
∫
Q(f(x)− fQ)g(x)dx

∣∣∣
β−1

(
supQ−

∫
Q β(|g(x)|)dx

) ≤ ~‖f‖BMOα

for each measurable function g with g(x) 6= 0 almost everywhere. On
the other hand, taking

g(x) :=
α(|f(x)− fQ|) sgn(f(x)− fQ)

|f(x)− fQ|
,

we see that the identity (2.9) and its variants lead to

β−1

(
sup
Q
−
∫
Q
β(|g(x)|)dx

)
= β−1

(
sup
Q
−
∫
Q
α(|f(x)− fQ|)dx

)
= (β−1 ◦ α)(‖f‖BMOα)

=
α(‖f‖BMOα)

‖f‖BMOα

.
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Therefore we obtain

‖f‖∗ ≥

∣∣∣supQ−
∫
Q(f(x)− fQ)g(x)dx

∣∣∣
β−1

(
supQ−

∫
Q β(|g(x)|)dx

)
=

∣∣∣supQ−
∫
Q α(|(f − fQ)|)dx

∣∣∣
β−1

(
supQ−

∫
Q β(|g(x)|)dx

)
= ‖f‖BMOα .

In all, we get

‖f‖BMOα ≤ ‖f‖∗ ≤ ~‖f‖BMOα .

For any constant k ≥ 0 and for f ∈ BMOα(Rd), the identity (2.14)
yields

‖kf‖BMOα ≤ k‖f‖∗ ≤ k~‖f‖BMOα

and

~‖kf‖BMOα ≥ k‖f‖∗ ≥ k‖f‖BMOα ,

which imply the inequalities (2.12). When ~ = 1, we have the homo-
geneity:

‖kf‖BMOα = k‖f‖BMOα .

This completes the proof. �

The functional ‖ · ‖BMOα on BMOα(Rd) may not produce a norm,
since it does not always satisfy the homogeneity required for norms.
Instead, by virtue of Minkowski’s inequality (2.5), we may define a metric
on BMOα(Rd) by

d(f, g) := ‖f − g‖BMOα for f, g ∈ BMOα(Rd).

It formulates a complete metric space on BMOα(Rd). The arguments
comply the following standard procedure.

Suppose that {fn} is a Cauchy sequence in BMOα(Rd). Then there
exists a subsequence {fnk} of {fn} such that

d(fnk+1
, fnk) ≤ 1

(2~)k
, k = 1, 2, · · · .

Setting F with

F (x) = |fn1(x)|+
∞∑
k=1

|fnk+1
(x)− fnk(x)|,
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we can notice that |F (x)| <∞ almost everywhere x ∈ Rd. In fact, from
the fact that

‖F‖BMOα ≤ ~‖fn1‖BMOα +
∞∑
k=1

~k+1‖fnk+1
− fnk‖BMOα

= ~‖fn1‖BMOα + ~ <∞,

there exists a null set N ⊂ Rd such that F (x) < ∞ for all x ∈ Rd \N .
Therefore for any x ∈ Rd \N , the absolute convergence of the series

fn1(x) +
∞∑
k=1

[fnk+1
(x)− fnk(x)]

makes it possible to define f(x) := lim
k→∞

fnk(x) on Rd \N . The fact

‖f − fnk‖BMOα =

∥∥∥∥∥∥
∞∑

j=k+1

fnj+1 − fnj

∥∥∥∥∥∥
BMOα

≤
∞∑

j=k+1

~j+1‖fnj+1 − fnj‖BMOα =
~
2k

and the inequality

‖f‖BMOα ≤ ~‖f − fnk‖BMOα + ~‖fnk‖BMOα

yield f ∈ BMOα and the convergence of {fnk} to f in BMOα(Rd),
which, in turn, implies the convergence of the original Cauchy sequence
{fn} in BMOα(Rd).
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