DOI QR코드

DOI QR Code

Analysis of electrochemical double-layer capacitors using a Natural Rubber-Zn based polymer electrolyte

  • Nanditha Rajapaksha (Polymer Electronics Research Group, Department of Electronics, Wayamba University of Sri Lanka) ;
  • Kumudu S. Perera (Polymer Electronics Research Group, Department of Electronics, Wayamba University of Sri Lanka) ;
  • Kamal P. Vidanapathirana (Polymer Electronics Research Group, Department of Electronics, Wayamba University of Sri Lanka)
  • 투고 : 2021.06.10
  • 심사 : 2021.11.20
  • 발행 : 2022.03.25

초록

Electrochemical double-layer capacitors (EDLCs) based on solid polymer electrolytes (SPEs) have gained an immense recognition in the present world due to their unique properties. This study is about preparing and characterizing EDLCs using a natural rubber (NR) based SPE with natural graphite (NG) electrodes. NR electrolyte was consisted with 49% methyl grafted natural rubber (MG49) and zinc trifluoromethanesulfonate ((Zn(CF3SO3)2-ZnTF). It was characterized using electrochemical impedance spectroscopy (EIS) test, dc polarization test and linear sweep voltammetry (LSV) test. NG electrodes were made using a slurry of NG and acetone. EIS test, cyclic voltammetry (CV) test and galvanostatic charge discharge (GCD) test have been done to characterize the EDLC. Optimized electrolyte composition with NR: 0.6 ZnTF (weight basis) exhibited a conductivity of 0.6 x 10-4 Scm-1 at room temperature. Conductivity was predominantly due to ions. The electrochemical stability window was found to be from 0.25 V to 2.500 V. Electrolyte was sandwiched between two identical NG electrodes to fabricate an EDLC. Single electrode specific capacitance was about 2.26 Fg-1 whereas the single electrode discharge capacitance was about 1.17 Fg-1. The EDLC with this novel NR-ZnTF based SPE evidences its suitability to be used for different applications with further improvement.

키워드

과제정보

The research described in this paper was financially supported by the National Research Council Sri Lanka under the research grant NRC 17-006. Also, Associated Speciality Rubbers (PVT) Ltd, Kegalle, Sri Lanka and Bogala Graphite Lanka, Bogala, Sri Lanka are highly acknowledged for providing samples.

참고문헌

  1. Abdulhakeem, B., Farshad, B., Damilola, M., Fatemeh, T., Mopeli, F., Julien, D. and Ncholu, M. (2014), "Morphological characterization and impedance spectroscopy study of porous 3D carbons based on graphene foam-PVA/phenol-formaldehyde resin composite as an electrode material for super capacitors", RSC Adv., 4(73), 39066-39072. https://doi.org/10.1039/C4RA05425C.
  2. Abruna, H.D., Kiya, Y. and Henderson, J.C. (2008), "Batteries and electrochemical capacitors", Phys. Today, 61(12), 43-47. https://doi.org/10.1063/1.3047681.
  3. Arslan, A. and Hur, E. (2012), "Super capacitor applications of polyaniline and poly(N-methylaniline) coated pencil graphite electrode", Int. J. Electrochem. Sci., 7, 12558-12572. https://doi.org/10.1016/S1452-3981(23)16566-7
  4. Aziz, A.F., Nazir, K., Ayub, S.F., Adam, N.I., Yahya, M.Z. and Ali, A.B.M.M. (2018), "Electrochemical properties of polymer electrolytes treated with 6ppd on 30% poly(methyl methacrylate) grafted natural rubber", Malay. J. Anal. Sci., 22(3), 491-498. https://doi.org/10.17576/mjas-2018-2203-17.
  5. Balamurugan, S. and Ganesan, S. (2020), "Novel cobalt redox materials admitted in natrosol polymer with a thiophene based additive as a gel polymer electrolyte to tune up the efficiency of dye sensitized solar cells", Electrochim. Acta, 329, 135169. https://doi.org/10.1016/j.electacta.2019.135169.
  6. Chandra, A. (2013), "Synthesis and dielectric studies on PEO-PVP blended solid polymer electrolytes", Ind. J. Pure Appl. Phys., 51, 788-791.
  7. Das, S. and Ghosh, A. (2017), "Solid polymer electrolyte based on PVdF-HFP and ionic liquid embedded with TiO2 nanoparticle for electric double layer capacitor (EDLC) application", J. Electrochem. Soc., 164, F1348-F1353. https://doi.org/10.1149/2.0561713jes
  8. Fang, B. and Binder, L. (2006), "A modified activated carbon aerogel for high-energy storage in electric double layers", J. Power Sour., 163, 616-622. https://doi.org/10.1016/j.jpowsour.2006.09.014.
  9. Fletcher, S., Black, V.J. and Kirkpatrick, I. (2014), "A universal equivalent circuit for carbon based super capacitors", J. Solid State Electrochem., 18, 1377-1387. https://doi.org/10.1007/s10008-013-2328-4.
  10. Glasse, M.D., Idris, R., Latham, R.J., Linford, R.G. and Schlindwein, W.S. (2002), "Polymer electrolytes based on modified natural rubber", Solid State Ionics, 147, 289-294. https://doi.org/10.1016/S0167-2738(02)00024-3
  11. Idris, R., Glasse, M.D., Latham, R.J., Linford, R.G. and Schlindwein, W.S. (2001), "Polymer electrolytes based on modified natural rubber for use in rechargeable lithium batteries", J. Power Sour., 94, 206-211. https://doi.org/10.1016/S0378-7753(00)00588-7
  12. Kamisan, A.S., Kudin, T.I.T., Ali, A.M.M. and Yahya, M.Z.A. (2011), "Polymer gel electrolytes based on 49% methyl grafted natural rubber", Sains Malaysiana, 40, 49-54.
  13. Kamisan, A.S., Kudin, T.I.T., Ali, A.M.M. and Yahya, M.Z.A. (2011), "Electrical and physical studies on 49% methyl grafted natural rubber based composite polymer gel electrolytes", Electrochim. Acta, 57, 207-211. https://doi.org/10.1016/j.electacta.2011.06.096.
  14. Khoon, L.T., Ataollahi, N., Hassan, N.H. and Ahmad, A. (2016), "Studies of porous solid polymeric electrolytes based on poly(vinylidenefluoride) and poly(methyl methacrylate) grafted natural rubber for applications in electrochemical devices", J. Solid State Electrochem., 20(1), 203-213. https://doi.org/10.1007/s10008-015-3017-2.
  15. Khoon, L.T., Zaini, N.F.M., Mobarak, N.N., Hassan, N.H., Noor, S.A.M., Mamat, S., Loh, K.S., KuBulat, K.H., Su'ait, M.S. and Ahmad, A. (2019), "PEO based polymer electrolyte compriosed of epoxidized natural rubber material (ENR50) for Li ion polymer battery application", Electrochim. Acta, 316, 283-291. https://doi.org/10.1016/j.electacta.2019.05.143.
  16. Kroupa, M., Offer, G.J. and Kosek, J. (2016), "Modelling of supercapacitors: Factors influencing performance", J. Electrochem. Soc., 163(10), A2475-A2487. https://doi.org/10.1149/2.0081613jes.
  17. Libich, J., Maca, J., Vondrak, J., Cech, O. and Sedlarikova, M. (2018), "Supercapacitors: Properties and applications", J. Energy Storage, 17, 224-227. https://doi.org/10.1016/j.est.2018.03.012.
  18. Lu, W., Henry, K., Turchi, C. and Pellegrino, J. (2006), "Incorporating ionic liquid gel electrolytes into polymer gels for solid-state ultra capacitors", J. Electrochem. Soc., 155(5), A361-A367. https://doi.org/10.1149/1.2869202.
  19. Mohamed, S.N., Johari, N.A., Ali, A.M.M., Harun, M.K. and Yahya, M.Z.A. (2008), "Electrochemical studies on epoxidised natural rubber based polymer electrolytes for lithium air cells", J. Power Sour., 183, 351-354. https://doi.org/10.1016/j.jpowsour.2008.04.048.
  20. Nimah, Y. L., Cheng, M.Y., Cheng, J.H., Rick, J. and Hwang, B.J. (2015), "Solid state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries", J. Power Sour., 278, 375-381. https://doi.org/10.1016/j.jpowsour.2014.11.047.
  21. Pal, P. and Ghosh, A. (2018), "Highly efficient gel polymer electrolytes for all solid state electrochemical charge storage devices", Electrochim. Acta, 278, 137-148. https://doi.org/10.1016/j.electacta.2018.05.025.
  22. Pandey, G.P. and Rastogi, A.C. (2012), "Solid-state super capacitors based on pulse polymerized poly(3,4-ethylenedioxythiophene) electrodes and ionic liquid gel polymer electrolyte", J. Electrochem. Soc., 159(10), A1664-A1671. https://doi.org/10.1149/2.047210jes.
  23. Pandey, G.P., Hashmi, S.A. and Kumar, Y. (2010), "Performance studies of activated charcoal based electrical double layer capaciotrs with ionic liquid gel polymer electrolytes", Energy Fuel., 24, 6644-6652. https://doi.org/10.1021/ef1010447.
  24. Pandey, G.P., Kumar, Y. and Hashmi, S. (2010), "Ionic liquid incorporated polymer electrolytes for super capacitor application", Ind. J. Chem., 49A, 743-751.
  25. Ramesh, S., Liew, C.W. and Ramesh, K. (2011), "Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes", J. Non-Cryst Solid., 357, 2132-2138. https://doi.org/10.1016/j.jnoncrysol.2011.03.004.
  26. Ravindran, D. and Vickraman, P. (2012), "Mg2+ ionic conductivity behavior of mixed salt system in PVA-PEG blend matrix", Int. J. Scientif. Res. Publ., 2(12), 1-4.
  27. Romanitan, C., Varasteanu, P., Mihalache, I., Culita, D., Somacescu, S., Pascu, R. and Kusko, M. (2018), "High-performance solid state super capacitors assembling graphene interconnected networks in porous silicon electrode by electrochemical methods using 2,6-dihydroxynaphthalen", Scientif. Report., 8(1), 9654-9668. https://doi.org/10.1038/s41598-018-28049-x.
  28. Ruschhaupt, P., Pohimann, S., Varzi, A. and Passerini, S. (2020), "Determining realistic electrochemical stability window of electrolytes for EDLC", Batter. Super Capacit., 3, 1-11. https://doi.org/10.1002/batt.202000009.
  29. Salleh, N.S., Aziz, S.B., Aspanut, Z. and Kadir, M.F.Z. (2016), "Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide", Ionics, 22, 2157-2167. http://doi.org/10.1007/s11581-016-1731-0.
  30. Silakul, P. and Magaraphan, R. (2013), "Gel Polymer Electrolyte from Poly(Acrylamide) coated on natural rubber latex by topology-controlled emulsion polymerization for dye sensitized solar cells application", Adv. Mater. Res., 747, 325-328. https://doi.org/10.4028/www.scientific.net/AMR.747.325
  31. Simon, P. and Gogotsi, Y. (2008), "Materials for electrochemical capacitors", Nat. Mater., 7(11), 845-854. https://doi.org/10.1038/nmat2297.
  32. Tey, J.P., Careem, M.A., Yarmo, M.A. and Arof, A.K. (2016), "Durian shell-based activated carbon electrode for EDLCs", Ionics, 22(7), 1209-1216. https://doi.org/10.1007/s11581-016-1640-2.
  33. Yang, I., Kim, S.G., Kwon, S.H., Kim, M.S. and Jung, J.C. (2017), "Relationships between pore size and charge transfer resistance of carbon aerogels for organic electric double-layer capacitor electrodes", Electrochim. Acta, 223, 21-30. https://doi.org/10.1016/j.electacta.2016.11.177.
  34. Yu, H., Wu, J., Fan, L., Lin, Y., Xu, K., Tang, Z., Cheng, C., Tang, S., Lin, J. and Huang, M. (2012), "A novel redox-mediated gel polymer electrolyte for high-performance super capacitor", J. Power Sour., 198, 402-407. https://doi.org/10.1016/j.jpowsour.2011.09.110.
  35. Zhang, Q., Liu, K., Ding, F. and Liu, X. (2017), "Recent advances in solid polymer electrolytes for lithium batteries", Nano Res., 10(12), 4139-4174. https://doi.org/10.1007/s12274-017-1763-4.