DOI QR코드

DOI QR Code

An improved 1-D thermal model of parabolic trough receivers: Consideration of pressure drop and kinetic energy loss effects

  • Yassine Demagh (LESEI, Mechanical Department, University of Batna 2)
  • Received : 2020.03.24
  • Accepted : 2020.12.03
  • Published : 2022.03.25

Abstract

In this study, the first law of thermodynamics was used to establish a one-dimensional (1-D) thermal model for parabolic trough receiver (PTR) taking into account the pressure drop and kinetic energy loss effects of the heat transfer fluid (HTF) flowing inside the absorber tube. The validation of the thermal model with data from the SEGS-LS2 solar collector-test showed a good agreement, which is consistent with the previously established models for the conventional straight and smooth (CSS) receiver where the effects of pressure drop and kinetic energy loss were neglected. Based on the developed model and code, a comparative study of the newly designed parabolic trough S-curved receiver versus the CSS receiver was conducted and solar unit's performances were analyzed. Without any supplementary devices, the S-curved receiver enhances the performance of the parabolic trough module, with a maximum of 0.16% compared to CSS receiver with the same sizes and mass flow rates. Thermal losses were reduced by 7% due to the decrease in the temperature of the outer surface of the receiver tube. In addition, it has been shown that from a mass flow rate of 9.5 kg/s the heat losses of the S-curved receiver remain unchanged despite the improvement in the heat transfer rate.

Keywords

References

  1. Abou-Arab, T.W., Aldoss, T.K. and Mansour, A. (1991), "Pressure drop in alternating curved tubes", Appl. Scientif. Res., 48, 1-9. https://doi.org/10.1007/BF01998662.
  2. Bejan, A. (2013), Convection Heat Transfer, John Wiley & Sons, Inc., Hoboken, New Jersey.
  3. Bitam, E., Demagh, Y., Hachicha, A.A., Benmoussa, H. and Kabar, Y. (2018), "Numerical investigation of a novel sinusoidal tube receiver for parabolic trough technology", Appl. Energy, 218, 494-510. https://doi.org/10.1016/j.apenergy.2018.02.177.
  4. Cheng, Z.D., He, Y.L. and Cui, F.Q. (2012), "Numerical study of heat transfer enhancement by unilateral longitudinal vortex generators inside parabolic trough solar receivers", Int. J. Heat Mass Transf., 55, 5631- 5641. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.057.
  5. Cheng, Z.D., He, Y.L. and Qiu, Y. (2015), "Detailed non uniform thermal model of a parabolic trough solar receiver with two halves and two inactive ends", Renew. Energy, 74, 139-147. https://doi.org/10.1016/j.renene.2014.07.060.
  6. Delgado-Torres, A.M. and Garcia-Rodriguez, L. (2007), "Comparison of solar technologies for driving a desalination system by means of an organic Rankine cycle", Desalination, 216, 276-291. https://doi.org/10.1016/j.desal.2006.12.013.
  7. Demagh, Y., Bordja, L., Kabar, Y. and Benmoussa, H. (2015), "A design method of an S-curved parabolic trough collector absorber with a three dimensional heat flux density distribution", Solar Energy, 122, 873-884. https://doi.org/10.1016/j.solener.2015.10.002.
  8. Demagh, Y., Kabar, Y., Bordja, I. and Noui, S. (2016), "The 3D heat flux density distribution on a novel parabolic trough wavy absorber", AIP Conf. Proc., 1734, 070004. https://doi.org/10.1063/1.4949151.
  9. Dudley, V., Kolb, G., Sloan, M. and Kearney, D. (1994), "SEGS LS2 solar collector-test results", Tech. Report of Sandia, National Laboratories, SANDIA, 94-1884.
  10. Forristall, R. (2003), "Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver", Report NREL.
  11. Fuqiang, W., Qingzhi, L., Huaizhi, H. and Jianyu, T. (2016), "Parabolic trough receiver with corrugated tube for improving heat transfer and thermal deformation characteristics", Appl. Energy, 164, 411-424. https://doi.org/10.1016/j.apenergy.2015.11.084.
  12. Fuqiang, W., Ziming, C., Jianyu, T., Yuan, Y., Yong, S. and Linhua, L. (2017), "Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review", Renew. Sustain. Energy Rev., 79, 1314-1328. https://doi.org/10.1016/j.rser.2017.05.174.
  13. Garcia-Valladares, O. and Velazquez, N. (2009), "Numerical simulation of parabolic trough solar collector: improvement using counter flow concentric circular heat exchangers", Int. J. Heat Mass Transf., 52(3), 597-609. https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.004.
  14. Ghadirijafarbeigloo, S., Zamzamian, A.H. and Yaghoubi, M. (2014), "3-D numerical simulation of heat transfer and turbulent flow in a receiver tube of solar parabolic trough concentrator with louvered twistedtape inserts", Energy Proc., 49, 373-380. https://doi.org/10.1016/j.egypro.2014.03.040.
  15. Gong, G., Huang, X., Wang, J. and Hao, M. (2010), "An optimized model and test of the China's first high temperature parabolic trough solar receiver", Solar Energy, 84, 2230-2245. https://doi.org/10.1016/j.solener.2010.08.003.
  16. Gong, X.K., Wang, F., Wang, H., Tan, J., Lai, Q. and Han, H. (2017), "Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with pin fin arrays inserting", Solar Energy, 144, 185-202. https://doi.org/10.1016/j.solener.2017.01.020.
  17. Guo, J., Huai, X. and Liu, Z. (2016), "Performance investigation of parabolic trough solar receiver", Appl. Therm. Eng., 95, 357-364. https://doi.org/10.1016/j.applthermaleng.2015.11.035.
  18. Hachicha, A.A., Rodriguez, I., Capdevila, R. and Oliva, A. (2013), "Heat transfer analysis and numerical simulation of a parabolic trough solar collector", Appl. Energy, 111, 581-592. https://doi.org/10.1016/j.apenergy.2013.04.067.
  19. Huang, W., Xu, Q. and Hu, P. (2016), "Coupling 2D thermal and 3D optical model for performance prediction of a parabolic trough solar collector", Solar Energy, 139, 365-380. https://doi.org/10.1016/j.solener.2016.09.034.
  20. Huang, Z., Li, Z.Y., Yu, G.L. and Tao, W.Q. (2017), "Numerical investigations on fully-developed mixed turbulent convection in dimpled parabolic trough receiver tubes", Appl. Therm. Eng., 114, 1287-1299. https://doi.org/10.1016/j.applthermaleng.2016.10.012.
  21. Incropera, F.P. and Dewitt, D.P. (2002), Fundamentals of Heat and Mass Transfer, Wiley, New York.
  22. Kalidasan, B., Shankar, R. and Srinivas, T. (2016), "Absorber tube with internal hinged blades for solar parabolic trough collector", Energy Procedia, 90, 463-469. https://doi.org/10.1016/j.egypro.2016.11.213.
  23. Kalogirou, S.A. (2012), "A detailed thermal model of a parabolic trough collector receiver", Energy, 48, 298-306. https://doi.org/10.1016/j.energy.2012.06.023.
  24. Kumar, K.R. and Reddy, K.S. (2009), "Thermal analysis of solar parabolic trough with porous disc receiver", Appl. Energy, 86(9), 1804-1812. https://doi.org/10.1016/j.apenergy.2008.11.007.
  25. Liang, H., You, S. and Zhang, H. (2015), "Comparison of different heat transfer models for parabolic trough solar collectors", Appl. Energy, 148, 105-114. https://doi.org/10.1016/j.apenergy.2015.03.059.
  26. Lu, J., Ding, J., Yang, J. and Yang, X. (2013), "Non uniform heat transfer model and performance of parabolic trough solar receiver", Energy, 59, 666-675. https://doi.org/10.1016/j.energy.2013.07.052.
  27. Munoz, J. and Abanades, A. (2011), "Analysis of internal helically finned tubes for parabolic trough design by CFD tool", Appl. Energy, 88(11), 4139-4149. https://doi.org/10.1016/j.apenergy.2011.04.026.
  28. Mwesigye, A., Bello-Ochende, T. and Meyer, J.P. (2014), "Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts", Appl. Energy, 136, 989-1003. https://doi.org/10.1016/j.apenergy.2014.03.037.
  29. Padilla, R.V., Demirkaya, G., Goswami, D.Y., Stefanakos, E. and Rahman, M.M. (2011), "Heat transfer analysis of parabolic trough solar receiver", Appl. Energy, 88, 5097-5110. https://doi.org/10.1016/j.apenergy.2011.07.012.
  30. Reddy, K.S., Kumar, K.R. and Ajay, C.S. (2015), "Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector", Renew. Energy, 77, 308-319. https://doi.org/10.1016/j.renene.2014.12.016.
  31. Rogers, G.F.C. and Mayhew, Y.R. (1964), "Heat transfer and pressure loss in helically coiled tubes with turbulent flow", Int J Heat Mass Transf., 7, 1207-1216. https://doi.org/10.1016/0017-9310(64)90062-6.
  32. Wang, P., Liu, D.Y. and Xu, C. (2013), "Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams", Appl. Energy, 102, 449-460. https://doi.org/10.1016/j.apenergy.2012.07.026.