DOI QR코드

DOI QR Code

Environmental assessment of a BIPV system

  • Demetrios N. Papadopoulos (Department of Environmental Engineering, School of Engineering, University of Patras) ;
  • Constantinos N. Antonopoulos (Department of Environmental Engineering, School of Engineering, University of Patras) ;
  • Vagelis G. Papadakis (Department of Environmental Engineering, School of Engineering, University of Patras)
  • Received : 2019.04.25
  • Accepted : 2020.10.22
  • Published : 2022.03.25

Abstract

The application of Photovoltaic (PV) power in the building sector, is expanding as part of the ongoing energy transition into renewables. The article addresses the question of sustainability of energy generated from PVs through an environmental assessment of a building-integrated PV system (BIPV) connected to the grid through net metering. Employing retrospective life cycle analysis (LCA), with the CCaLC2 software and ecoinvent data, the article shows that the carrying structure and other balance of system (BOS) components are responsible for a three times higher energy payback time than the literature average. However, total environmental impact can be lowered through reuse or reinstallation of PVs on the same building structure after the 30-year interval. Further ways to improve environmental efficiency include identifying the most polluting materials for each LCA parameter. The results of this study are of interest to researchers and producers of PVs and organizations investing and promoting decentralized power production through PVs.

Keywords

Acknowledgement

The work was supported by project DIDSOLIT-PB, co-funded by the European Union under the ENPI CBC Mediterranean Sea Basin Programme.

References

  1. Alaaeddin, M.H., Sapuan, S.M., Zuhri, M.M., Zainudin, E.S. and Faris-Oqla, M.L. (2019), "Photovoltaic applications: Status and manufacturing prospects", Renew. Sust. Energy Rev., 102, 318-332. https://doi.org/10.1016/j.rser.2018.12.026. 
  2. Alsema E.A. (2000), "Energypay-back time and CO2 emissions of PV systems", Progress Photovoltaics Res. Appl., 8(1), 17-25. https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<17::AID-PIP295>3.0.CO;2-C. 
  3. Alsema, E.A. and Nieuwlaar, E. (2000), "Energy viability of photovoltaic systems", Energy Policy, 28(14), pp. 999-1010. https://doi.org/10.1016/S0301-4215(00)00087-2. 
  4. Alsema, E.A. and Wild-Scholten, M.J. (2005), "Environmental impacts of crystalline silicon photovoltaic module production", Proceedings of the Materials Research Society Fall Meeting, Boston, Massachusetts, U.S.A., November-December. 
  5. Alsema, E.A., Wild-Scholten, M.J. and Fthenakis, V.M. (2006), "Environmental impacts of PV electricity generation-acritical comparison of energy supply options", Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, September. 
  6. Battisti, R. and Corrad, A. (2005), "Evaluation of technical improvements of photovoltaic systems through life cycle assessment methodology", Energy, 30(7), 952-967. https://doi.org/10.1016/j.energy.2004.07.011. 
  7. Bogacka, M., Pikon, K. and Landrat, M. (2017), "Environmental impact of PV cell waste scenario", Waste Manage., 70, 198-203. https://doi.org/10.1016/j.wasman.2017.09.007. 
  8. Carnevale A.E., Lombardi L. and Zanchi L. (2016) "Wind and solar energy: a comparison of costs and environmental impacts", Adv. Energy Res., 4(2), 121-146. https://doi.org/10.12989/eri.2016.4.2.121. 
  9. Choi, W., Warren, D.R. and Pate, B.M. (2016) "An experimental performance analysis of a cold region stationary photovoltaic", Adv. Energy Res., 4(1), 1-28. http://doi.org/10.12989/eri.2016.4.1.001. 
  10. Desideri, U., Proietti, S., Zepparelli F., Sdringola, P. and Bini, S. (2012), "Life cycle assessment of a ground-mounted1778kW photovoltaic plant and comparison with tra-ditional energy production systems", Appl. Energy, 97, 930-943. https://doi.org/10.1016/j.apenergy.2012.01.055. 
  11. DIDSOLIT_PB Project. (2017), Development & Implementation of Decentralised Solar Energy-Related Innovative Technologies for Public Buildings in the Mediterranean Basin Countries, http://monitoritzacio.dyndns.org:1234/html5/index.html. 
  12. Dones, R. and Frischknecht, R. (1998), "Life-cycle assessment of photovoltaic systems: Results of Swiss studies on energy chains", Progress Photovoltaics Res. Appl., 6(2), 117-125. https://doi.org/10.1002/(SICI)1099-159X(199803/04)6:2<117::AID-PIP209>3.0.CO;2-M. 
  13. EIA (2016), International Energy Outlook 2016, U.S. Department of Energy, Washington, D.C.,
  14. European Commission. (2011), A Roadmap for Moving to a Competitive Low Carbon Economy in 2050, Brussels, Belgium. 
  15. Ferroni, F. and Hopkirk, R.J. (2016), "Energy return on energy invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation", Energy Policy, 94, 336-344. https://doi.org/10.1016/j.enpol.2016.03.034. 
  16. Fiandra, V., Sannino, L., Andreozzi, C. and Graditi, G. (2019), "End-of-life of silicon PV panels: A sustainable materials recovery process", Waste Manage., 84, 91-101. https://doi.org/10.1016/j.wasman.2018.11.035. 
  17. Frischknecht, Ρ., Itten, R., Sinha, P., de Wild-Scholten, M., Zhang, J. and Fthenakis, V. (2015), "Life cycle inventories and life cycle assessments of photovoltaic systems", Report T12-04:2015, International Energy Agency (IEA) PVPS Task 12. 
  18. Frischknecht, Ρ., Itten, R., Sinha, P., de Wild-Scholten, M., Zhang, J. and Fthenakis, V. (2015), "Life cycle inventories and life cycle assessments of photovoltaic systems", Report T12-04:2015, International Energy Agency (IEA) PVPS Task 12. 
  19. Frontini, F., Bonomo, P. and Chatzipanagi, A. (2015), "BIPV product overview for solar facades and roofs", SUPSI Report. 
  20. Fthenakis V.M., Alsema E. (2006), "Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004 -early 2005 status", Prog. Photovoltaics, 14(3), 275-280. https://doi.org/10.1002/pip.706. 
  21. Fthenakis, V.M.,Kim H.C.,Alsema E.A. (2008), "Emissions from photovoltaic life cycles", Environ. Sci. Technol., 42(6), 2168-2174. https://doi.org/10.1021/es071763q. 
  22. Glockner, R., Odden, J.O., Halvorsen, G., Tronstad, R. and Wild-Scholten, M.J. (2008), "Environmental lifecycle assessment of the Elkem solar metallurgical process route to solar grade silicon with focus on energy consumption and greenhouse gas emissions", Proceedings of the Silicon for the Chemical and Solar Industry IX, Oslo, Norway, June. 
  23. Granata, G., Pagnanellia, F., Moscardini, E., Havlik, T. and Toro, L. (2014), "Recycling of photovoltaic panels by physical operations", Solar Energy Mater. Solar Cells, 123, 239-248. https://doi.org/10.1016/j.solmat.2014.01.012. 
  24. Hondo, H. (2005), "Life cycle GHG emission analysis of power generation systems: Japanese case", Energy, 30(11-12), 2042-2056. https://doi.org/10.1016/j.energy.2004.07.020. 
  25. ISO 14040 (2006a), Environmental Management - Life Cycle Assessment - Principlesand Framework, International Standards Organisation, Geneva, Switzerland. 
  26. ISO 14044 (2006b), Environmental Management - Life Cycle Assessment - Requirements and Guidelines, International Standards Organization, Geneva, Switzerland. 
  27. Ito, M., Kato, K., Komoto, K., Kichimi, T. and Kurokawa, K. (2007), "Comparative study on cost and lifecycle analysis for 100MW very large-scale PV (VLS-PV) systems in deserts using m-Si, a-Si, CdTe, and CIS modules", Prog. Photovoltaics, 16(1), 17-30. https://doi.org/10.1002/pip.770. 
  28. Ito, M., Kato, K., Komoto, K., Kichimi, T., Sugihara, H. and Kurokawa, K. (2003), "An analysis of variation of very large-scale PV (VLS-PV) systems in the world deserts", Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, May. 
  29. Ito, M., Komoto, K. and Kurokawa, K. (2010), "Life-cycle analyses of very-large scale PV systems using six types of PV modules", Current Appl. Phys., 10(2), 271-273. https://doi.org/10.1016/j.cap.2009.11.028 
  30. Jungbluth, N. (2005), "Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database", Prog. Photovoltaics, 13(5), 429-446. https://doi.org/10.1002/pip.614. 
  31. Jungbluth, N., Dones, R. and Frischknecht, R. (2007), "Life cycle assessment of photo-voltaics; update of the ecoinvent database", Proceedings of the 14th SETAC LCA Case Studies Symposium, Goteborg, Sweden, December. 
  32. Jungbluth, N., Stucki, M., Flury, K., Frischknecht, R. and Busser, S. (2012), Life Cycle Inventories of Photovoltaics, ESU-services Ltd. Uster. http://esu-services.ch/fileadmin/download/publicLCI/jungbluth-2012-LCI-Photovoltaics.pdf. 
  33. Kato, K., Murata, A. and Sakuta, K. (1998), "Energy pay-back time and life-cycle CO2 emission of residential PV power system with silicon PV module", Prog. Photovoltaics, 6(2), 105-115. https://doi.org/10.1002/(SICI)1099-159X(199803/04)6:2<105::AID-PIP212>3.0.CO;2-C. 
  34. Kim, B., Lee, J., Kim, K. and Hur, T. (2014), "Evaluation of the environmental performance of sc-Si and mc-Si PV systems in Korea", Sol. Energy, 99, 100-114. https://doi.org/10.1016/j.solener.2013.10.038. 
  35. Kumar V., Teja R.V., Singh M. and Mishra S. (2019), "PV based off-grid charging station for electric vehicle", Proceedings of the IFAC Workshop on Control of Smart Grid and Renewable Energy Systems CSGRES 2019, Jeju, Korea, June. 
  36. Lehtinen, H., Saarentaus, A., Rouhiainen, J., Pitts, M. and Azapagic, A. (2011), "A review of LCA methods and tools and their suitability for SMEs", BIO-CHEM Project Report, Europe Innova.
  37. Macsteel (2008), Database of Structual Steel Sections, https://www.macsteel.co.za/files/saisc_structural_steel_section_properties.xls.
  38. Mansoor Α., Sultana B., Shafigue S. and Zaman K. (2019), "The water-energy-food resources and environment: Evidence from selected SAARC", Adv. Energy Res., 6(1), 1-15. http://doi.org/10.12989/eri.2019.6.1.001. 
  39. Mesaritis, G., Symeou, E., Delimitis, Oikonomidis, S., Jaegle, M., Tarantik, K., Nicolaou, C. and Kyratsi, T. (2019), "Recycling Si-kerf from photovoltaics: A very promising route to thermoelectrics", J. Alloy. Compd., 775, 1036-1043. https://doi.org/10.1016/j.jallcom.2018.10.050. 
  40. Michalena E. and Tripanagnostopoulos Y. (2010), "Contribution of the solar energy in the sustainable tourism development of the Mediterranean islands", Renew. Energ., 35(3), 667-673. https://doi.org/10.1016/j.renene.2009.08.016. 
  41. Nishimura, A., Hayashi, Y., Tanaka, K., Hirota, M., Kato, S. and Ito, M. (2010), "Life cycle assessment and evaluation of energy payback time on high-concentration photovoltaic power generation system", Appl. Energy, 87(9), 2797-2807. https://doi.org/10.1016/j.apenergy.2009.08.011. 
  42. NREL (2012), Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics, https://www.nrel.gov/docs/fy13osti/56487.pdf. 
  43. Pacca S., Sivaraman, D. and Keoleian G. (2006), "Life cycle assessment of the 33 kW photovoltaic system on the Dana Building at the University of Michigan", A report of the Center for Sustainable Systems: Report No. CSS05-09, University of Michigan, Michigan, U.S.A. 
  44. Pacca, S., Sivaraman, D. and Keoleian, G. (2007), "Parameters affecting the life cycle performance of PV technologies and systems", Energy Policy, 35(6), 3316-3326. https://doi.org/10.1016/j.enpol.2006.10.003. 
  45. Padoan, F., Altimari, P. and Pagnanelli, F. (2019), "Recycling of end of life photovoltaic panels: A chemical prospective on process development", Sol. Energ., 177, 746-761. https://doi.org/10.1016/j.solener.2018.12.003. 
  46. Peeters, J., Altamirano, D., Dewulf, W. and Duflou, R. (2017), "Forecasting the composition of emerging waste streams with sensitivity analysis: A case study for photovoltaic (PV) panels in Flanders", Resour. Conserv. Recy., 120, 14-26. https://doi.org/10.1016/j.resconrec.2017.01.001. 
  47. Peng, J., Lu, L. and Yang, H. (2013), "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems", Renew. Sust. Energ. Rev., 19(3), 255-274. https://doi.org/10.1016/j.rser.2012.11.035. 
  48. Perez-Lombard, J., Ortiz, J. and Pout, C. (2008), "A review on buildings energy consumption information", Energ. Buildings, 40(3), 394-398. https://doi.org/10.1016/j.enbuild.2007.03.007. 
  49. Perpinan, O., Lorenzo, E., Castro, M. and Eyras, R. (2009), "Energy payback time of grid connected PV systems: Comparison between tracking and fixed systems", Prog. Photovoltaics, 17(2), 137-147. https://doi.org/10.1002/pip.871. 
  50. Pester, S. and Crick, F. (2013), Performance of Photovoltaic Systems on Non-domestic Buildings, IHS BRE Press, U.K. 
  51. Phylipsen, G.M. and Alsema, E.A. (1995), "Environmental life-cycle assessment of multi-crystalline silicon solar cell modules", Report no. 95057, Department of Science, Technology and Society, Utrecht University, Utrecht, The Netherlands. 
  52. Raugei, M., Bargigli, S. nad Ulgiati, S. (2007), "Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si", Energy, 32(8), 1310-1318. https://doi.org/10.1016/j.energy.2006.10.003. 
  53. Ritzen, M.J., Vroon, Z., Rovers, R., Lupisek, A. and Geurts, C. (2017), "Environmental impact comparison of a ventilated and a non-ventilated building-integrated photovoltaic rooftop design in the Netherlands: Electricity output, energy payback time, and land claim", Sol. Energy, 155, 304-313. https://doi.org/10.1016/j.solener.2017.06.041. 
  54. Sanchez-Pantoja, N., Vidal, R. and Pastor, M.C. (2018), "Aesthetic perception of photovoltaic integration within new proposals for ecological architecture", Sustain. Cities Soc., 39, 203-214. https://doi.org/10.1016/j.scs.2018.02.027. 
  55. Sanz, M. A., Martin-Duque, J.F., Martin-Moreno, C., Lucia, A., Nicolau, J.M., Pedraza, J., Sanchez, L., Ruiz, R. and Garcia, A. (2008), Silica sand slope gullying and mining in Central Spain: erosion processes and geomorphic reclamation of contour mining, Geo-Environment and Landscape Evolution III, https://www.witpress.com/Secure/elibrary/papers/GEO08/GEO08001FU1.pdf. 
  56. Sardi J., Mithulananthan N. and Hung D.Q. (2017), "Strategic allocation of community energy storage in a residential system with rooftop PV units", Appl. Energ., 206(15), 159-171. https://doi.org/10.1016/j.apenergy.2017.08.186. 
  57. Seng, L.Y., Lalchand, G., Sow-Lin, G.M. (2008), "Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia", Energ. Policy, 36(6), 2130-2142. https://doi.org/10.1016/j.enpol.2008.02.016. 
  58. Sharif, S. and Hammad. A. (2019), "Simulation-based multi-objective optimization of institutional building renovation considering energy consumption life-cycle cost and life-cycle assessment", J. Build. Eng., 21, 429-445. https://doi.org/10.1016/j.jobe.2018.11.006. 
  59. Sherwani, A.F. and Usmani, J.A. (2010), "Life cycle assessment of solar PV based electricity generation systems: A review", Renew. Sust. Energ. Rev., 14(1), 540-544. https://doi.org/10.1016/j.rser.2009.08.003. 
  60. Shukla, A.K., Sudhakar K. and Baredar, P. (2017b), "Recent advancement in BIPV product technologies: A review", Energ. Buildings, 140, 188-195. https://doi.org/10.1016/j.enbuild.2017.02.015. 
  61. Shukla, A.K., Sudhakar K., Baredar, P. and Mamat, R. (2017a), "BIPV in Southeast Asian countries - opportunities and challenges", Renew. Energy Focus, 21, 25-32. https://doi.org/10.1016/j.ref.2017.07.001. 
  62. Shukla, A.K., Sudhakar K., Baredar, P. and Mamat, R. (2018a), "Solar PV and BIPV system: Barrier, challenges and policy recommendation in India", Renew. Sust. Energ. Rev., 82(3), 3314-3322. https://doi.org/10.1016/j.rser.2017.10.013. 
  63. Shukla, A.K., Sudhakar K., Baredar, P. and Mamat, R. (2018b), "BIPV based sustainable building in South Asian countries", Sol. Energy, 170, 1162-1170. https://doi.org/10.1016/j.solener.2018.06.026. 
  64. Stoppato, A. (2008), "Life cycle assessment of photovoltaic electricity generation", Energy, 33(2), 224-232. https://doi.org/10.1016/j.energy.2007.11.012. 
  65. The Royal Academy of Engineering (2010), Engineering a low carbon built environment: The discipline of Building Engineering Physics, http://www.raeng.org.uk/publications/reports/engineering-a-low-carbon-built-environment. 
  66. Tripanagnostopoulos, Y., Souliotis, M., Battisti, R. and Corrado, A. (2005), "Energy, cost and LCA results of PV and hybrid PV/T solar systems", Prog. Photovoltaics, 13(3), 235-250. https://doi.org/10.1002/pip.590. 
  67. Tripathy, M., Sadhu, P.K. and Panda, S.K. (2016), "A critical review on building integrated photovoltaic products", Renew. Sust. Energ. Rev., 61(3), 451-465. https://doi.org/10.1016/j.rser.2016.04.008. 
  68. Tupule, J.P., Marano, V., Yurkovich, S. and Rizzoni, G. (2013), "Economic and environmental impacts of a PV powered workplace parking garage charging station", Appl. Energ., 108, 323-332. https://doi.org/10.1016/j.apenergy.2013.02.068. 
  69. Vellini, M., Gambini, M. and Prattella, V. (2017) "Environmental impacts of pv technology throughout the life cycle: Importance of the end-of-life management for si-panels and cdte-panels", Energy, 138, 1099-1111. https://doi.org/10.1016/j.energy.2017.07.031. 
  70. Vilches, A., Garcia-Martinez, A. and Sanchez-Montanes, B. (2017), "Life cycle assessment (LCA) of building refurbishment: A literature review", Energ. Buildings, 135, 286-301. https://doi.org/10.1016/j.enbuild.2016.11.042. 
  71. Wang, W., Liu, Y., Wu, X., Xu, Y., Yu, W., Zhao, C. and Zhong, Y. (2016), "Environmental assessments and economic performance of BAPV and BIPV systems in Shanghai", Energ. Buildings, 130, 98-106. https://doi.org/10.1016/j.enbuild.2016.07.066. 
  72. Wild-Scholten, M.J. (2009) "Energy payback times of PV modules and systems", Proceedings of the Workshop Photovoltaik-Modultechnik, Koeln, Germany, November. 
  73. Wong, J.H., Royapoor, M. and Chan, C.W. (2016), "Review of life cycle analyses and embodied energy requirements of single-crystalline and multi-crystalline silicon photovoltaic systems", Renew. Sust. Energ. Rev., 58, 608-618. https://doi.org/10.1016/j.rser.2015.12.241. 
  74. Yoon, J.H., Song, J., Lee, S.J. (2011), "Practical application of building integrated photovoltaic (BIPV) systems using transparent amorphous silicon thin-film module", Sol. Energy, 85(5), 723-733. https://doi.org/10.1016/j.solener.2010.12.026. 
  75. Yue, D., You. F. and Darling, B. (2014), "Domestic and overseas manufacturing scenarios of silicon-based photovoltaics: Life cycle energy and environmental", Sol. Energy, 105, 669-678. https://doi.org/10.1016/j.solener.2014.04.008. 
  76. Zhai, P. and William, E.D. (2010), "Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems", Environ. Sci. Technol., 44(20), 7950-7955. https://doi.org/10.1021/es1026695. 
  77. Zhang, X., Lau, S.K., Lau, S.S. and Zhao, Y. (2018), "Photovoltaic integrated shading devices (PVSDs): A review", Sol. Energy, 170, 947-968. https://doi.org/10.1016/j.solener.2018.05.067.