DOI QR코드

DOI QR Code

Investigation of hyperbolic dynamic response in concrete pipes with two-phase flow

  • Zheng, Chuanzhang (School of Architectural Engineering, Chongqing Creation Vocational College) ;
  • Yan, Gongxing (School of Architectural Engineering, Chongqing Creation Vocational College) ;
  • Khadimallah, Mohamed Amiine (Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University) ;
  • Nouri, Alireza Zamani (Department of Civil Engineering, Shahr-e-Qods Branch, Islamic Azad University) ;
  • Behshad, Amir (Faculty of Technology and Mining, Yasouj University)
  • 투고 : 2020.05.14
  • 심사 : 2022.04.29
  • 발행 : 2022.05.25

초록

The objective of this study is to simulate the two-phase flow in pipes with various two-fluid models and determinate the shear stress. A hyperbolic shear deformation theory is used for modelling of the pipe. Two-fluid models are solved by using the conservative shock capturing method. Energy relations are used for deriving the motion equations. When the initial conditions of problem satisfied the Kelvin Helmholtz instability conditions, the free-pressure two-fluid model could accurately predict discontinuities in the solution field. A numerical solution is applied for computing the shear stress. The two-pressure two-fluid model produces more numerical diffusion compared to the free-pressure two-fluid and single-pressure two-fluid models. Results show that with increasing the two-phase percent, the shear stress is reduced.

키워드

과제정보

This work was supported by Yongchuan District Natural Science Foundation Project (2021yc-jckx20015) and Project of Chongqing Higher Vocational and Technical Education Research Association (gy201047).

참고문헌

  1. Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N.T. (2020), "Higher order nonlocal viscoelastic strain gradient theory for dynamic buckling analysis of carbon nanocones", Aerosp. Sci. Tech., 107, 106259. https://doi.org/10.1016/j.ast.2020.106259.
  2. Al-Furjan, M.S.H., Farrokhian, A., Mahmoud, S.R., Kolahchi, R. (2021a), "Dynamic deflection and contact force histories of graphene platelets reinforced conical shell integrated with magnetostrictive layers subjected to low-velocity impact", Thin. Wall. Struct., 163, 107706. https://doi.org/10.1016/j.tws.2021.107706.
  3. Al-Furjan, M.S.H., Hajmohammad, M.H., Shen, X., Rajak, D.K. and Kolahchi, R. (2021b), "Evaluation of tensile strength and elastic modulus of 7075-T6 aluminum alloy by adding SiC reinforcing particles using vortex casting method", J. Alloys. Compund., 886, 161261. https://doi.org/10.1016/j.jallcom.2021.161261.
  4. Al-Furjan, M.S.H., Xu, M.X., Farrokhian, A., Jafari, G.S., Shen, X. and Kolahchi, R. (2022a), "On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories", Wave Rand. Complex. Media, 1-25. https://doi.org/10.1080/17455030.2022.2030499.
  5. Alzabeebee, S., Chapman, D.N. and Faramarzi, A. (2018), "Innovative approach to determine the minimum wall thickness of flexible buried pipes", Geomech. Eng., 15(2), 755-767. https://doi.org/10.12989/gae.2018.15.2.755.
  6. Amabili, M. (2008), "Nonlinear vibrations and stability of shells and plates", New York, Cambridge University Press.
  7. Dai, H.L., Wang, L. and Ni, Q. (2013), "Dynamics of a fluid-conveying pipe composed of two different materials", Int. J. Eng. Sci., 73, 67-76. https://doi.org/10.1016/j.ijengsci.2013.08.008.
  8. Deng, J., Liu, Y., Zhang, Z. and Liu, W. (2017), "Stability analysis of multi-span viscoelastic functionally graded material pipes conveying fluid using a hybrid method", Europ. J. Mech. A/Solid., 65, 257-270. https://doi.org/10.1016/j.euromechsol.2017.04.003.
  9. Fakhar, A. and Kolahchi, R. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci., 144, 788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036.
  10. Furjan, M.S.H., Yang, Y., Farrokhian, G.S., Shen, X., Kolahchi, R. and Rajak, D.K. (2022b), "Dynamic instability of nanocomposite piezoelectric-leptadenia pyrotechnica rheological elastomer-porous functionally graded materials micro viscoelastic beams at various strain gradient higher-order theories", Polym. Compos., 43, 282-298. https://doi.org/10.1002/pc.26373.
  11. Ghaitani, M.M. and Majidian, A. (2017), "Frequency and critical fluid velocity analysis of pipes reinforced with FG-CNTs conveying internal flows", Wind Struct., 24, 267-285. https://doi.org/10.12989/was.2017.24.3.267.
  12. He, T. (2015), "Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes", Wind Struct., 20, 423-448. https://doi.org/10.12989/was.2015.20.3.423.
  13. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020b), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A/Solid., 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010.
  14. Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N.T. (2020a), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin. Wall. Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820.
  15. Kolahchi, R., Keshtegar, B. and Trung, N.T. (2022), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", Int. J. Sandw. Struct., 24, 643-662. https://doi.org/10.1177/10996362211020388.
  16. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.
  17. Kolahchi, R., Zhu, S.P., Keshtegar, B. and Trung, N.T. (2020). "Dynamic buckling optimization of laminated aircraft conical shells with hybrid nanocomposite martial", Aerosp. Sci. Tech., 98, 105656. https://doi.org/10.1016/j.ast.2019.105656.
  18. Kutin, J. and Bajsic, I. (2014), "Fluid-dynamic loading of pipes conveying fluid with a laminar mean-flow velocity profile", J. Fluid. Struct., 50, 171-183. https://doi.org/10.1016/j.jfluidstructs.2014.05.014.
  19. Maalawi, K.Y., Abouel-Fotouh, A.M., El Bayoumi, M. and Ali Yehia, K.A. (2016), "Design of composite pipes conveying fluid for improved stability characteristics", Int. J. Appl. Eng. Res., 11, 7633-7639.
  20. Madani, H., Hosseini, H. and Shokravi, M. (2017), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22, 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  21. Marzani, A., Mazzotti, M., Viola, E., Vittori, P. and Elishakoff, I. (2012), "FEM formulation for dynamic instability of fluid-conveying pipe on nonuniform elastic foundation", Mech. Based Des. Struct. Mach., 40, 83-95. https://doi.org/10.1080/15397734.2011.618443.
  22. Motezaker, M. and Kolahchi, R. (2017), "Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concrete, 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.
  23. Motezaker, M., Kolahchi, R., Kumar Rajak, D. and Mahmoud, S. R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., https://doi.org/10.1002/pc.26118.
  24. Ni, Q., Luo, Y., Li, M. and Yan, H. (2017), "Natural frequency and stability analysis of a pipe conveying fluid with axially moving supports immersed in fluid", J. Sound Vib., 403, 173-189. https://doi.org/10.1016/j.jsv.2017.05.023.
  25. Ni, Q., Zhang, Z.L. and Wang, L. (2011), "Application of the differential transformation method to vibration analysis of pipes conveying fluid", Appl. Math. Comput., 217, 7028-7038. https://doi.org/10.1016/j.amc.2011.01.116.
  26. Qian, Q., Wang, L. and Ni, Q. (2009), "Instability of simply supported pipes conveying fluid under thermal loads", Mech. Res. Comm., 36, 413-417. https://doi.org/10.1016/j.mechrescom.2008.09.011.
  27. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells, 2nd Ed. Washington, CRC press.
  28. Rivero-Rodriguez, J. and Perez-Saborid, M. (2015), "Numerical investigation of the influence of gravity on flutter of cantilevered pipes conveying fluid", J. Fluid. Struct., 55, 106-121. https://doi.org/10.1016/j.jfluidstructs.2015.02.009.
  29. Ryu, B.J., Ryu, S.U., Kim, G.H. and Yim, K.B. (2004), "Vibration and dynamic stability of pipes conveying fluid on elastic foundations", KSME Int. J., 18, 2148-2157. https://doi.org/10.1007/BF02990219.
  30. Ryu, B.J., Ryu, S.U., Kim, G.H. and Yim, K.B. (2011), "Nonlocal beam model for nonlinear analysis of carbon nanotubes on elastomeric substrates", Comput. Mater. Sci., 50, 1022-1029. https://doi.org/10.1016/j.commatsci.2010.10.042.
  31. Shokravi, M. (2017a), "Buckling analysis of embedded laminated plates with agglomerated CNT-reinforced composite layers using FSDT and DQM", Geomech. Eng., 12, 327-346. https://doi.org/10.12989/gae.2017.12.2.327.
  32. Shokravi, M. (2017b), "Vibration analysis of silica nanoparticles-reinforced concrete beams considering agglomeration effects", Comput. Concrete, 19, 333-338. https://doi.org/10.12989/cac.2017.19.3.333.
  33. Sun, F.J. and Gu, M. (2014), "A numerical solution to fluid-structure interaction of membrane structures under wind action", Wind Struct., 19, 35-58. https://doi.org/10.12989/was.2014.19.1.035.
  34. Texier, B.D. and Dorbolo, S. (2015), "Deformations of an elastic pipe submitted to gravity and internal fluid flow", J. Fluid. Struct., 55, 364-371. https://doi.org/10.1016/j.jfluidstructs.2015.03.010.
  35. Wang, L. (2012), "Flutter instability of supported pipes conveying fluid subjected to distributed follower forces", Acta Mechanica Solida Sinica, 25, 46-52. https://doi.org/10.1016/S0894-9166(12)60005-6.
  36. Yao, W.L., Mostafa, S., Ericson, E., Yang, Z., Xu, G. and Aldrich, C. (2019), "Enhancement of fluid flow performance through deep fractured rocks in an in-situ leaching potential mine site using discrete fracture network (DFN)", Adv. Concrete Constr., 18, 585-594. https://doi.org/10.12989/gae.2019.18.6.585.