DOI QR코드

DOI QR Code

FG-based computational fracture of frequency up-conversion for bistablity of rotating shell: An effective numerical scheme

  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
  • 투고 : 2021.05.11
  • 심사 : 2022.05.02
  • 발행 : 2022.05.25

초록

Theoretical study of vibration distinctiveness of rotating cylindrical are examined for three volume fraction laws viz.: polynomial, exponential and trigonometric. These laws control functionally graded material composition in the shell radius direction. Functionally graded materials are controlled from two or more materials. In practice functionally graded material comprised of two constituent materials is used to form a cylindrical shell. For the current shell problem stainless steel and nickel are used for the shell structure. A functionally graded cylindrical shell is sanctioned into two types by interchanging order of constituent materials from inner and outer side for Type I and Type II cylindrical shell arrangement. Fabric composition of a functionally graded material in a shell thickness direction is controlled by volume fraction law. Variation of power law exponent brings change in frequency values. Influence of this physical change is investigated to evade future complications. This procedure is capable to cater any boundary condition by changing the axial wave number. But for simplicity, numerical results have been evaluated for clamped- simply supported rotating cylindrical shells. It has been observed from these results that shell frequency is bifurcated into two parts: one is related to the backward wave and other with forward wave. It is concluded that the value of backward frequency is some bit higher than that forward frequency. Influence of volume fraction laws have been examined on shell frequencies. Backward and forward frequency curves for a volume fraction law are upper than those related to two other volume fraction laws. The results generated furnish the evidence regarding applicability of present shell model and also verified by earlier published literature.

키워드

참고문헌

  1. Ahmad, M. and Naeem, M.N. (2009), "Vibration characteristics of rotating FGM circular cylindrical shell using wave propagation method", Eur. J. Sci. Res., 36(2), 184-235. https://doi.org/10.1007/s00707-009-0141-z.
  2. Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stab. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
  3. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
  4. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
  5. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
  6. AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., 25(1), 111-122. https://doi.org/10.12989/sss.2020.25.1.111.
  7. Amabili, M., Pellicano, F. and Paidoussis, M.P. (1998), "Nonlinear vibrations of simply Love, A.E.H. (1888), "On the small free vibrations and deformation of thin elastic shell", Phil. Trans. R. Soc. London, A179, 491-549. https://doi.org/10.1098/rsta.1888.0016.
  8. Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., 18, 787-800. http://doi.org/10.12989/sss.2016.18.4.787.
  9. Arefi, M. and Zenkour, A.M. (2017), "Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor", Smart Struct. Syst., 19, 33-38. https://doi.org/10.12989/sss.2017.19.1.033.
  10. Arshad, S.H., Naeem, M.N., Sultana, N., Iqbal, Z. and Shah, A.G. (2011), "Effects of exponential volume fraction law on the natural frequencies of FGM cylindrical shells under various boundary conditions", Arch. Appl. Mech., 81, 999-1016. https://doi.org/10.1007/s00419-010-0460-5.
  11. Asadijafari, M.H., Zarastvand, M.R. and Talebitooti, R. (2021), "The effect of considering Pasternak elastic foundation on acoustic insulation of the finite doubly curved composite structures", Compos. Struct., 256, 113064. https://doi.org/10.1016/j.compstruct.2020.113064.
  12. Attia, M.A. and Mohamed, S.A. (2020), "Nonlinear thermal buckling and postbuckling analysis of bidirectional functionally graded tapered microbeams based on Reddy beam theory", Eng. Comput., 1-30. https://doi.org/10.1007/s00366-020-01080-1.
  13. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443. https://doi.org/10.12989/anr.2019.7.6.443.
  14. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
  15. Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160, 137. https://doi.org/10.1006/jsvi.1993.1010.
  16. Chung, H., Turula, P., Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nucl. Eng. Des., 63(1), 109-1012. https://doi.org/10.1016/0029-5493(81)90020-0.
  17. Di Taranto, R.A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin-walled circular cylinder", Trans. ASME J. Appl. Mech., 31, 700-701. https://doi.org/10.1115/1.3629733.
  18. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
  19. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
  20. Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.
  21. Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101, 495. https://doi.org/10.1016/S0022-460X(85)80067-5.
  22. Ghosh, A., Miyamoto, Y., Reimanis, I. and Lannutti, J.J. (1997), "Functionally graded materials, manufacture, properties and applications. Ceramic Transactions", Am. Ceram. Soc., 76, 71-89.
  23. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  24. Koizumi, M.F.G.M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  25. Krommer, M., Vetyukova, Y. and Staudigl, E. (2016), "Nonlinear modelling and analysis of thin piezoelectric plates: Buckling and post-buckling behavior", Smart Struct. Syst., 18(1), 155-181. https://doi.org/10.12989/sss.2016.18.1.155.
  26. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
  27. Lam K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", J. Sound Vib., 116, 198. https://doi.org/10.1016/0961-9526(95)91289-S.
  28. Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525.
  29. Li, H. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X.
  30. Loghman, A., Arani, A.G. and Barzoki, A.A.M. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concrete, 19(6), 677-687. https://doi.org/10.12989/cac.2017.19.6.677.
  31. Loy, C.T., Lam, K.Y. and Shu, C. (1997), "Analysis of cylindrical shells using generalized differential quadrature", Shock Vib., 4(3), 193-198. https://doi.org/10.3233/SAV-1997-4305.
  32. Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
  33. Naeem, M.N. and Sharma, C.B. (2000), "Prediction of natural frequencies for thin circular cylindrical shells", Proceedings of the Institution of Mechanical Engineers, Part C J. Mech. Eng. Sci., 214(10), 1313-1328. https://doi.org/10.1243/0954406001523290.
  34. Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mechanica, 191, 75-91. http/10.1007/s00707-006-0438-0.
  35. Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5.
  36. Penzes, R.L.E. and Kraus H. (1972), "Free vibrations of pre-stresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10, 1309. https://doi.org/10.2514/3.6605.
  37. Poplawski, B., Mikulowski, G., Pisarski, D., Wiszowaty, R. and Jankowski, L. (2019), "Optimum actuator placement for damping of vibrations using the Prestress-Accumulation Release control approach", Smart Struct. Syst., 24(1), 27-35. https://doi.org/10.12989/sss.2019.24.1.027.
  38. Rahmatnezhad, K., Zarastvand, M.R. and Talebitooti, R. (2021), "Mechanism study and power transmission feature of acoustically stimulated and thermally loaded composite shell structures with double curvature", Compos. Struct., 276, 114557. https://doi.org/10.1016/j.compstruct.2021.114557.
  39. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7, 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  40. Saito, T. and Endo, M. (1986), "Vibrations of finite length rotating cylindrical shell", J. Sound Vib., 107, 17. https://doi.org/10.1016/0022-460X(86)90279-8.
  41. Sayin, E.,and Calayir, Y. (2015), "Comparison of linear and non-linear earthquake response of masonry walls", Comput. Concrete, 16(1), 17-35. https://doi.org/10.12989/cac.2015.16.1.017.
  42. Seilsepour, H., Zarastvand, M. and Talebitooti, R. (2022), "Acoustic insulation characteristics of sandwich composite shell systems with double curvature: The effect of nature of viscoelastic core", J. Vib. Control, 10775463211056758. https://doi.org/10.1177/10775463211056758.
  43. Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells with and without Longitudinal Stiffeners, National Aeronautic and Space Administration.
  44. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  45. Shanab, R.A. and Attia, M.A. (2020), "Semi-analytical solutions for static and dynamic responses of bi-directional functionally graded nonuniform nanobeams with surface energy effect", Eng. Comput., 1-44. https://doi.org/10.1007/s00366-020-01205-6.
  46. Sharma, P., Singh, R. and Hussain, M. (2020), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
  47. Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(1), 198-202. https://doi.org/10.1115/1.2930412.
  48. Srinivasan, A.V. and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", Trans. ASME J. Eng. Indus., 93, 1229-1232. https://doi.org/10.1115/1.3428067.
  49. Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites", Part 2 Therm. Mech. Behav. Int. Mater., 42, 85-116. https://doi.org/10.1179/imr.1997.42.3.85.
  50. Swaddiwudhipong, S., Tian, J. and Wang, C.M. (1995), "Vibration of cylindrical shells with ring supports", J. Sound Vib., 187(1), 69-93. https://doi.org/10.1006/jsvi.1995.0503.
  51. Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527.
  52. Toulokian, Y.S. (1967), "Thermo physical properties of high temperature solid materials", New York, Macmillan.
  53. Wang S.S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acoust. Soc. Am., 55, 1340-1342. https://doi.org/10.1121/1.1914708.
  54. Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233.
  55. Zahrai, S.M. and Kakouei, S. (2019), "Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles", Smart Struct. Syst., 24(3), 391-401. https://doi.org/10.12989/sss.2019.24.3.391.
  56. Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.
  57. Zarastvand, M.R., Asadijafari, M.H. and Talebitooti, R. (2021), "Improvement of the low-frequency sound insulation of the poroelastic aerospace constructions considering Pasternak elastic foundation", Aerosp. Sci. Tech., 112, 106620. https://doi.org/10.1016/j.ast.2021.106620.
  58. Zarastvand, M.R., Ghassabi, M. and Talebitooti, R. (2021), "A review approach for sound propagation prediction of plate constructions", Arch. Comput. Method. Eng., 28(4), 2817-2843. https://doi.org/10.1007/s11831-020-09482-6.
  59. Zarastvand, M.R., Ghassabi, M. and Talebitooti, R. (2021), "Acoustic insulation characteristics of shell structures: A review", Arch. Comput. Method. Eng., 28(2), 505-523. https://doi.org/10.1007/s11831-019-09387-z.
  60. Zarastvand, M.R., Ghassabi, M. and Talebitooti, R. (2022), "Prediction of acoustic wave transmission features of the multilayered plate constructions: A review", J. Sandw. Struct. Mater., 24(1), 218-293. https://doi.org/10.1177/1099636221993891.
  61. Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15, 269-278. https://doi.org/10.1016/0020-7403(73)90009-X.