References
- Abid, N., Ramzan, M., Chung, J.D., Kadry, S. and Chu, Y.M. (2020), "Comparative analysis of magnetized partially ionized copper, copper oxide-water and kerosene oil nanofluid flow with Cattaneo-Christov heat flux", Sci. Rep. UK., 10(1), 1-14. https://doi.org/10.1038/s41598-020-74865-5.
- Alibak, A.H., Khodarahmi, M., Fayyazsanavi, P., Alizadeh, S.M., Hadi, A.J. and Aminzadehsarikhanbeglou, E. (2022), "Simulation the adsorption capacity of polyvinyl alcohol/carboxymethyl cellulose based hydrogels towards methylene blue in aqueous solutions using cascade correlation neural network (CCNN) technique", J. Clean. Prod., 337, 130509. https://doi.org/10.1016/j.jclepro.2022.130509.
- Ali, V., Ibrahim, M., Berrouk, A.S., Algehyne, E.A., Saeed, T. and Chu, Y.M. (2021), "Navigating the effect of tungsten oxide nano-powder on ethylene glycol surface tension by artificial neural network and response surface methodology", Powder Technol., 386, 483-490. https://doi.org/10.1016/j.powtec.2021.03.043.
- Alizadeh, S.M., Khodabakhshi, A., Abaei Hassani, P. and Vaferi, B. (2021), "Smart-identification of petroleum reservoir well testing models using deep convolutional neural networks (GoogleNet)", J. Energ. Resour. Technol., 143(7), 073008. https://doi.org/10.1115/1.4050781.
- Al-Musawi, A.A., Alwanas, A.A., Salih, S.Q., Ali, Z.H., Tran, M.T. and Yaseen, Z.M. (2020), "Shear strength of SFRCB without stirrups simulation: implementation of hybrid artificial intelligence model", Eng. Comput. Germany., 36(1), 1-11. https://doi.org/10.1007/s00366-018-0681-8.
- Amidi, Y., Nazari, B., Sadri, S. and Yousefi, A. (2021), "Parameter estimation in multiple dynamic synaptic coupling model using bayesian point process state-space modeling framework", Neural Comput., 33(5), 1269-1299. http://doi.org/10.1162/neco_a_01375.
- Angayarkanni, S.A. and Philip, J. (2014), "Effect of nanoparticles aggregation on thermal and electrical conductivities of nanofluids", J. Nanofluids., 3(1), 17-25. https://doi.org/10.1166/jon.2014.1083.
- Arani, A.G., Farazin, A. and Mohammadimehr, M. (2021), "The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research", Adv nano Res., 10(4), 327-337. http://doi.org/10.12989/anr.2021.10.4.327.
- Asadi, A., Bakhtiyari, A.N. and Alarifi, I.M. (2021), "Predictability evaluation of support vector regression methods for thermophysical properties, heat transfer performance, and pumping power estimation of MWCNT/ZnO-engine oil hybrid nanofluid", Eng. Comput. Germany., 37(4), 3813-3823. https://doi.org/10.1007/s00366-020-01038-3.
- Balaz, M., Balazova, L., Kovacova M., Daneu, N., Salayova, A., Bedlovicova, Z. and Tkacikova, L. (2019), "The relationship between precursor concentration and antibacterial activity of biosynthesized Ag nanoparticles", Adv. Nano. Res., 7(2), 125-134. http://doi.org/10.12989/anr.2019.7.2.125.
- Bao, L., Zhong, C., Jie, P. and Hou, Y. (2019), "The effect of nanoparticle size and nanoparticle aggregation on the flow characteristics of nanofluids by molecular dynamics simulation", Adv. Mech. Eng., 11, 1687814019889486. https://doi.org/10.1177/1687814019889486.
- Cacua, K., Ordonez, F., Zapata, C., Herrera, B., Pabon, E. and Buitrago-Sierra, R. (2019), "Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability", Colloid Surface A, 583, 123960. https://doi.org/10.1016/j.colsurfa.2019.123960.
- Cao, Y., Kamrani, E., Mirzaei, S., Khandakar, A. and Vaferi, B. (2022), "Electrical efficiency of the photovoltaic/thermal collectors cooled by nanofluids: Machine learning simulation and optimization by evolutionary algorithm", Energy Rep., 8, 24-36. https://doi.org/10.1016/j.egyr.2021.11.252.
- Charandabi, S.E. and Kamyar, K. (2021a), "Prediction of cryptocurrency price index using artificial neural networks: A survey of the literature", Eur. J. Bus. Man Res., 6(6), 17-20. https://doi.org/10.24018/ejbmr.2021.6.6.1138.
- Charandabi, S.E. and Kamyar, K. (2021b), "Using a feed forward neural network algorithm to predict prices of multiple cryptocurrencies", Eur. J. Bus. Man Res., 6(5), 15-19. https://doi.org/10.24018/ejbmr.2021.6.5.1056.
- Choudhary, R., Khurana, D., Kumar, A. and Subudhi, S. (2017), "Stability analysis of Al2O3/water nanofluids", J. Exp. Nanosci., 12, 140-151. https://doi.org/10.1080/17458080.2017.1285445.
- Chu, Y.M., Ali, R., Asjad, M.I., Ahmadian, A. and Senu, N. (2020a), "Heat transfer flow of Maxwell hybrid nanofluids due to pressure gradient into rectangular region", Sci. Rep. UK., 10(1), 1-18. https://doi.org/10.1038/s41598-020-73174-1.
- Chu, Y.M., Ikram, M.D., Asjad, M.I., Ahmadian, A. and Ghaemi, F. (2021), "Influence of hybrid nanofluids and heat generation on coupled heat and mass transfer flow of a viscous fluid with novel fractional derivative", J. Therm. Anal. Calorim., 144, 2057-2077. https://doi.org/10.1007/s10973-021-10692-8.
- Chu, Y.M., Kumar, R. and Bach, Q.V. (2020b), "Water-based nanofluid flow with various shapes of Al2O3 nanoparticles owing to MHD inside a permeable tank with heat transfer", Appl. Nanosci., 1-12. https://doi.org/10.1007/s13204-020-01609-2.
- Daryayehsalameh, B., Nabavi, M. and Vaferi, B. (2021), "Modeling of CO2 capture ability of [Bmim][BF4] ionic liquid using connectionist smart paradigms", Environ. Technol. Innov., 22, 101484. https://doi.org/10.1016/j.eti.2021.101484.
- Dauji, S. (2020), "Prediction of concrete spall damage under blast: Neural approach with synthetic data", Comput. Concrete., 26(6), 533-546. https://doi.org/10.12989/cac.2020.26.6.533.
- Deng, X., Yang, T., Zhang, Q., Chu, Y., Luo, J., Zhang, L. and Li, P. (2019), "A monolith CuNiFe/γ-Al2O3/Al catalyst for steam reforming of dimethyl ether and applied in a microreactor", Int. J. Hydrogen. Energ., 44(5), 2417-2425. https://doi.org/10.1016/j.ijhydene.2018.11.072.
- Ebadian, M.A. and Lin, C.X. (2011), "A review of high-heat-flux heat removal technologies", J Heat Transfer., 133, 110801. https://doi.org/10.1115/1.4004340.
- Esfe, M.H., Esfandeh, S. and Bahiraei, M. (2020), "A two-phase simulation for investigating natural convection characteristics of nanofluid inside a perturbed enclosure filled with porous medium", Eng. Comput. Germany., 1-18. https://doi.org/10.1007/s00366-020-01204-7.
- Esmaeili-Faraj, S.H., Hassanzadeh, A., Shakeriankhoo, F., Hosseini, S. and Vaferi, B. (2021), "Diesel fuel desulfurization by alumina/polymer nanocomposite membrane: Experimental analysis and modeling by the response surface methodology", Chem. Eng. Process., 164, 108396. https://doi.org/10.1016/j.cep.2021.108396.
- Ghadimi, A. (2013), "Stability and thermal conductivity of low concentration titania nanofluids", Ph.D. Dissertation, Universiti Malaya, Kuala Lumpur, Malaysia.
- Gul, N., Ramzan, M., Chung, J.D., Kadry, S. and Chu, Y.M. (2020), "Impact of hall and ion slip in a thermally stratified nanofluid flow comprising Cu and Al2O3 nanoparticles with nonuniform source/sink", Sci. Rep. UK., 10(1), 1-18. https://doi.org/10.1038/s41598-020-74510-1.
- Guo, K. and Yang, G. (2020), "Load-slip curves of shear connection in composite structures: Prediction based on ANNs", Steel. Compos. Struct., 36(5), 493-506. https://doi.org/10.12989/scs.2020.36.5.493.
- Haq, F., Khan, M.I., Chu, Y.M., Khan, N.B. and Kadry, S. (2021), "Non-magnetized mixed convective viscous flow submerged in titanium oxide and aluminum titanium oxide hybrid nanoparticles towards a surface of cylinder", Int. Commun. Heat Mass., 120, 105027. https://doi.org/10.1016/j.icheatmasstransfer.2020.105027.
- Huang, J., Wang, X., Long, Q., Wen, X., Zhou, Y. and Li, L. (2009), "Influence of pH on the stability characteristics of nanofluids", Proceedings of the Symposium on Photonics and Optoelectronics, Wuhan, China, August.
- Hungjoon, K. (2016), "Effective dynamic conductivity correlation of nanofluids in convective flow", Ph.D. Dissertation, Seoul National University, Seoul.
- Hung, Y.H., Chen, J.H. and Teng, T.P. (2013), "Feasibility assessment of thermal management system for green power sources using nanofluid", J. Nanomater., 2013, 321261. https://doi.org/10.1155/2013/321261.
- Ibrahim, M., Algehyne, E.A., Saeed, T., Berrouk, A.S. and Chu, Y.M. (2021), "Study of capabilities of the ANN and RSM models to predict the thermal conductivity of nanofluids containing SiO2 nanoparticles", J. Therm. Anal. Calorim., 145, 1993-2003. https://doi.org/10.1007/s10973-021-10674-w.
- Ipek, S. and Mermerdas, K. (2020), "Experimental and computational study on fly ash and kaolin based synthetic lightweight aggregate", Comput. Concrete., 26(4), 327-342. https://doi.org/10.12989/cac.2020.26.4.327.
- Iqbal, W., Jalil, M., Khadimallah. M.A., Hussain, M., Naeem, M.N., Al Naim, A.F. and Tounsi, A. (2021), "Interaction of casson nanofluid with Brownian motion: Temperature profile with shooting method", Adv. Nano. Res., 10(4), 349-357. https://doi.org/10.12989/anr.2021.10.4.349.
- Jalal, M., Grasley, Z., Gurganus, C. and Bullard, J.W. (2020), "A new nonlinear formulation-based prediction approach using artificial neural network (ANN) model for rubberized cement composite", Eng. Comput. Germany., 1-18. https://doi.org/10.1007/s00366-020-01054-3.
- Jang, S.P., Hwang, K.S., Lee, J.H., Kim, J.H., Lee, B.H. and Choi, S.U. (2007), "Effective thermal conductivities and viscosities of water-based nanofluids containing Al2O3 with low concentration", Proceddings of the 7th IEEE Conference on Nanotechnology (IEEE NANO), Hong Kong, China, August.
- Jiang, Y., Zhang, G., Wang, J. and Vaferi, B. (2021), "Hydrogen solubility in aromatic/cyclic compounds: Prediction by different machine learning techniques", Int. J. Hydrogen Energy., 46, 23591-23602. https://doi.org/10.1016/j.ijhydene.2021.04.148.
- Kaabipour, S. and Hemmati, S. (2021), "A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures", Beilstein J. Nanotech., 12(1), 102-136. https://doi.org/10.3762/bjnano.12.9.
- Kang, H., Zhang, Y., Yang, M. and Li, L. (2012), "Molecular dynamics simulation on effect of nanoparticle aggregation on transport properties of a nanofluid", J. Nanotechnol. Eng. Med., 3, 021001. https://doi.org/10.1115/1.4007044.
- Karimi, M., Aminzadehsarikhanbeglou, E. and Vaferi, B. (2021), "Robust intelligent topology for estimation of heat capacity of biochar pyrolysis residues", Measurement., 183, 109857. https://doi.org/10.1016/j.measurement.2021.109857.
- Kazemi, M.H. and Nasr, M.A.B.M. (2014), "Convective heat transfer of MWCNT/HT-B Oil nanofluid inside micro-fin helical tubes under uniform wall temperature condition", Adv. Nano Res., 2(2), 99-109. https://doi.org/10.12989/anr.2014.2.2.099.
- Keshtkar, Z., Tamjidi, S. and Vaferi, B. (2021), "Intensifying nickel (II) uptake from wastewater using the synthesized γ-alumina: An experimental investigation of the effect of nanoadsorbent properties and operating conditions", Environ. Technol. Innov., 22, 101439. https://doi.org/10.1016/j.eti.2021.101439.
- Khalifeh, A. and Vaferi, B. (2019), "Intelligent assessment of effect of aggregation on thermal conductivity of nanofluids-Comparison by experimental data and empirical correlations", Thermochim. Acta., 681, 178377. https://doi.org/10.1016/j.tca.2019.178377.
- Khan, M.I., Qayyum, S., Farooq, S., Chu, Y.M. and Kadry, S. (2021), "Modeling and simulation of micro-rotation and spin gradient viscosity for ferromagnetic hybrid (Manganese Zinc Ferrite, Nickle Zinc Ferrite) nanofluids", Math. Comput. Simulat., 185, 497-509. https://doi.org/10.1016/j.matcom.2021.01.007.
- Khatir, S., Boutchicha, D., Le Thanh, C., Tran-Ngoc, H., Nguyen, T.N. and Wahab, M.A. (2020), "Improved ANN technique combined with Jaya algorithm for crack identification in plates using XIGA and experimental analysis", Theor. Appl. Fract Mec., 107, 102554. https://doi.org/10.1016/j.tafmec.2020.102554.
- Khatir, S., Tiachacht, S., Le Thanh, C., Ghandourah, E., Mirjalili, S. and Wahab, M.A. (2021), "An improved artificial neural network using arithmetic optimization algorithm for damage assessment in FGM composite plates", Compos. Struct., 273, 114287. https://doi.org/10.1016/j.compstruct.2021.114287.
- Khatir, S., Tiachacht, S., Thanh, C.L., Bui, T.Q. and Wahab, M.A. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509.
- Kole, M. and Dey, T.K. (2011), "Effect of aggregation on the viscosity of copper oxide-gear oil nanofluids", Int. J. Therm. Sci., 50, 1741-1747. https://doi.org/10.1016/j.ijthermalsci.2011.03.027.
- Lai, W.Y., Vinod, S., Phelan, P.E. and Prasher, R. (2009), "Convective heat transfer for water-based alumina nanofluids in a single 1.02-mm tube", J. Heat Transfer., 131, 112401. https://doi.org/10.1115/1.3133886.
- Lee, S.W. (2013), "Effects of Graphene and SiC nanofluids on critical heat flux and quenching for advanced nuclear reactors", Ph.D. Dissertation, Ulsan National Institute of Science and Technology, Ulsan, Korea.
- Liu, L., Stetsyuk, V., Kubiak, K.J., Yap, Y.F., Goharzadeh, A. and Chai, J.C. (2019), "Nanoparticles for convective heat transfer enhancement: Heat transfer coefficient and the effects of particle size and zeta potential", Chem. Eng. Commun., 206, 761-771. https://doi.org/10.1080/00986445.2018.1525364.
- Li, X., Chen, Y., Mo, S., Jia, L. and Shao, X. (2014), "Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid", Thermochim. Acta., 595, 6-10. https://doi.org/10.1016/j.tca.2014.09.006.
- Luo, Z., Luo, Z., Qin, Y., Wen, L., Ma, S. and Dai, Z. (2020), "Developing new tree expression programing and artificial bee colony technique for prediction and optimization of landslide movement", Eng. Comput. Germany., 36(3), 1117-1134. https://doi.org/10.1007/s00366-019-00754-9.
- Lu, S., Song, J., Li, Y., Xing, M. and He, Q. (2015), "Improvement of CO2 absorption using Al2O3 nanofluids in a stirred thermostatic reactor", Can. J. Chem. Eng., 93, 935-941. https://doi.org/10.1002/cjce.22175.
- Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.
- Mahajan, S. (2017), "Study of stability and thermal conductivity of nanoparticles in propylene glycol", M.Sc. Thesis, Minnesota State University, Mankato, U.S.A.
- Mahbubul, I.M., Saidur, R., Amalina, M.A., Elcioglu, E.B. and Okutucu-Ozyurt, T. (2015a), "Effective ultrasonication process for better colloidal dispersion of nanofluid", Ultrason Sonochem., 26, 361-369. https://doi.org/10.1016/j.ultsonch.2015.01.005.
- Mahbubul I.M., Shahrul I.M., Khaleduzzaman S.S., Saidur, R., Amalina, M.A. and Turgut, A.L.P.A.S.L.A.N. (2015b), "Experimental investigation on effect of ultrasonication duration on colloidal dispersion and thermophysical properties of alumina-water nanofluid", Int. J. Heat Mass Transf., 88, 73-81. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.048.
- Mazloom, M., Tajar, S.F. and Mahboubi, F. (2020), "Long-term quality control of self-compacting semi-lightweight concrete using short-term compressive strength and combinatorial artificial neural networks", Comput. Concrete., 25(5), 401-409. https://doi.org/10.12989/cac.2020.25.5.401.
- Moosavi, S.R., Vaferi, B. and Wood, D.A. (2021), "Auto-characterization of naturally fractured reservoirs drilled by horizontal well using multi-output least squares support vector regression", Arab. J. Geosci., 14, 545. https://doi.org/10.1007/s12517-021-06559-9.
- Mukherjee, S., Chakrabarty, S., Mishra, P.C. and Chaudhuri, P. (2020), "Transient heat transfer characteristics and process intensification with Al2O3-water and TiO2-water nanofluids: An experimental investigation", Chem. Eng. Process., 150, 107887. https://doi.org/10.1016/j.cep.2020.107887.
- Mukherjee, S., Mishra, P.C. and Chaudhuri, P. (2018), "Stability of heat transfer nanofluids-a review", ChemBioEng Rev., 5, 312-333. https://doi.org/10.1002/cben.201800008.
- Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A. and Brown, S.D. (2004), "An introduction to decision tree modeling", J. Chemomometrics, 18, 275-285. https://doi.org/10.1002/cem.873.
- NawazishMehdia S., Hussain M.M., Basha S.K. and Samad M.A. (2018), "Heat enhancement of heat exchanger using aluminium oxide (Al2O3), copper oxide (CuO) nano fluids with different concentrations", Mater. Today Proc., 5, 6481-6488. https://doi.org/10.1016/j.matpr.2017.12.261.
- Nezhad, E.Z., Qu, X., Musharavati, F., Jaber, F., Appleford, M.R., Bae, S., Uzun, K., Struthers, M., Chowdhury, M.E.H. and Khandakar, A. (2021), "Effects of titanium and carbon nanotubes on nano/micromechanical properties of HA/TNT/CNT nanocomposites", Appl. Surf. Sci., 538, 148123. https://doi.org/10.1016/j.apsusc.2020.148123.
- Nguyen, M.S.T., Thai, D.K. and Kim, SE. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel. Compos. Struct., 35(3), 415-437. https://doi.org/10.12989/scs.2020.35.3.415.
- Okonkwo, E.C., Wole-Osho, I., Kavaz, D., Abid, M. and AlAnsari, T. (2020), "Thermodynamic evaluation and optimization of a flat plate collector operating with alumina and iron mono and hybrid nanofluids", Sustain. Energ. Technol. Assess, 37, 100636. https://doi.org/10.1016/j.seta.2020.100636.
- Pandit, S. and Sharma, S. (2020), "Wavelet strategy for flow and heat transfer in CNT-water based fluid with asymmetric variable rectangular porous channel", Eng. Comput. Germany., 1-11. https://doi.org/10.1007/s00366-020-01139-z.
- Pare, A. and Ghosh, S.K. (2019), "Rheological analyses of aluminum oxide based water nanofluid", Proceedingd of the International Conference on Thermal Engineering, Gandhinagar, India, February.
- Pastoriza-Gallego, M.J., Casanova, C., Paramo, R., Barbes, B., Legido, J.L. and Pineiro, M.M. (2009), "A study on stability and thermophysical properties (density and viscosity) of Al2O3 in water nanofluid", J. Appl. Phys., 106, 64301. https://doi.org/10.1063/1.3187732.
- Podder, K.K., Chowdhury, M.E., Tahir, A.M., Mahbub, Z.B., Khandakar, A., Hossain, M.S. and Kadir, M.A. (2022), "Bangla sign language (bdsl) alphabets and numerals classification using a deep learning model", Sensors-Basel., 22(2), 574. https://doi.org/10.3390/s22020574.
- Saadatmorad, M., Jafari-Talookolaei, R.A., Pashaei, M.H. and Khatir, S. (2021), "Damage detection on rectangular laminated composite plates using wavelet based convolutional neural network technique", Compos. Struct., 278, 114656. https://doi.org/10.1016/j.compstruct.2021.114656.
- Sadeghi, R., Etemad, S.G., Keshavarzi, E. and Haghshenasfard, M. (2015), "Investigation of alumina nanofluid stability by UV-vis spectrum", Microfluid Nanofluid., 18, 1023-1030. https://doi.org/10.1007/s10404-014-1491-y.
- Seaberg, J., Kaabipour, S., Hemmati, S. and Ramsey, J.D. (2020), "A rapid millifluidic synthesis of tunable polymer-protein nanoparticles", Eur. J. Pharm. Biopharm., 154, 127-135. https://doi.org/10.1016/j.ejpb.2020.07.006.
- Seguini, M., Khatir, S., Boutchicha, D., Nedjar, D. and Wahab, MA. (2021), "Crack prediction in pipeline using ANN-PSO based on numerical and experimental modal analysis", Smart Struct. Syst., 27(3), 507-523. https://doi.org/10.12989/sss.2021.27.3.507.
- Sharif, H., Khadimallah, M,A., Naeem, M.N., Hussain, M., Hussain, S. and Tounsi, A. (2021a), "Flow of MHD PowellEyring nanofluid: Heat absorption and Cattaneo-Christov heat flux model", Adv. Nano. Res., 10(3), 221-234. https://doi.org/10.12989/anr.2021.10.3.221.
- Sharif, H., Khadimallah, M.A., Naeem, M.N., Hussain, M., Mahmoud, S.R., Al-Basyouni, K.S. and Tounsi, A. (2021b), "The investigation of Magnetohydrodynamic nanofluid flow with Arrhenius energy activation", Adv. Nano Res., 10(5), 437-448. https://doi.org/10.12989/anr.2021.10.5.437.
- Sheikholeslami, M., Ijaz Khan, M., Chu, Y.M., Kadry, S. and Khan, W.A. (2021), "CVFEM based numerical investigation and mathematical modeling of surface dependent magnetized copper-oxide nanofluid flow using new model of porous space", Numer. Meth. Part D E., 37(2), 1481-1494. https://doi.org/10.1002/num.22592.
- Song, D., Wang, Y., Jing, D. and Geng, J. (2016), "Investigation and prediction of optical properties of alumina nanofluids with different aggregation properties", Int. J. Heat Mass Transf., 96, 430-437. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.049.
- Syarif, D.G. and Prajitno, D.H. (2015), "Synthesis and characterization of Al2O3 nanoparticles and water-Al2O3 nanofluids for nuclear reactor Coolant", Adv. Mat. Res., 1123, 270-273. https://doi.org/10.4028/www.scientific.net/AMR.1123.270.
- Tran-Ngoc, H., Khatir, S., Ho-Khac, H., De Roeck, G., Bui-Tien, T. and Wahab, M.A. (2021), "Efficient artificial neural networks based on a hybrid metaheuristic optimization algorithm for damage detection in laminated composite structures", Compos. Struct., 262, 113339. https://doi.org/10.1016/j.compstruct.2020.113339.
- Vaferi, B., Eslamloueyan, R. and Ghaffarian, N. (2016), "Hydrocarbon reservoir model detection from pressure transient data using coupled artificial neural network-Wavelet transform approach", Appl. Soft. Comput. J., 47, 63-75. https://doi.org/10.1016/j.asoc.2016.05.052.
- Vakilinejad, A., Aroon, M.A., Al-Abri, M., Bahmanyar, H., Al-Ghafri, B., Myint, M.T.Z. and Vakili-Nezhaad, G.R. (2021), "Experimental investigation and modeling of the viscosity of some water-based nanofluids", Chem. Eng. Commun., 208, 1054-1068. https://doi.org/10.1080/00986445.2020.1727451.
- Wang, J., Ayari, M.A., Khandakar, A., Chowdhury, M.E., Uz Zaman, S.M., Rahman, T. and Vaferi, B. (2022), "Estimating the relative crystallinity of biodegradable polylactic acid and polyglycolide polymer composites by machine learning methodologies", Polymers-Basel., 14(3), 527. https://doi.org/10.3390/polym14030527.
- Wang, R.T. and Wang, J.C. (2017), "Intelligent dimensional and thermal performance analysis of Al2O3 nanofluid", Energ. Convers. Manag., 138, 686-697. https://doi.org/10.1016/j.enconman.2017.02.010.
- Wang, X. and Zhu, D. (2009), "Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids", Chem. Phys. Lett., 470, 107-111. https://doi.org/10.1016/j.cplett.2009.01.035.
- Wang, X.J., Li, H., Li, X.F., Zhou-Fei, W. and Fang, L. (2011), "Stability of TiO2 and Al2O3 nanofluids", Chinese Phys. Lett., 28, 86601. https://doi.org/10.1088/0256-307X/28/8/086601.
- Wang, X.J., Li, X.F., Wang, N., Wen, X.Y. and Long, Q. (2008), "Influence of SDBS on stability of Al2O3 nano-Suspensions", Proceedings of the Nanophotonics, Nanostructure, and Nanometrology II, International Society for Optics and Photonics, Beijing, China, January.
- Wen, T., Lu, L. and Zhong, H. (2018), "Investigation on the dehumidification performance of LiCl/H2O-MWNTs nanofluid in a falling film dehumidifier", Build. Environ., 139, 8-16. https://doi.org/10.1016/j.buildenv.2018.05.010.
- Yang, L., Du, K., Niu, X., Li, Y. and Zhang, Y. (2011), "An experimental and theoretical study of the influence of surfactant on the preparation and stability of ammonia-water nanofluids", Int. J. Refrig., 34, 1741-1748. https://doi.org/10.1016/j.ijrefrig.2011.06.007.
- Yan, M., Yousef, Z., Morteza, G., Oslub, K., Khadimallah, MA. and Issakhov, A. (2021), "Computer simulation for stability performance of sandwich annular system via adaptive tuned deep learning neural network optimization", Adv. Nano Res., 11(1), 83-99. http://doi.org/10.12989/anr.2021.11.1.083.
- Yaylaci, E.U., Yaylaci, M., O lmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput Concrete., 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.551.
- Yousefi, A., Amidi, Y., Nazari, B., and Eden, U.T. (2020), "Assessing goodness-of-fit in marked point process models of neural population coding via time and rate rescaling", Beilstein J. Nanotech., 32(11), 2145-2186. https://doi.org/10.1162/neco_a_01321.
- Zareei, M., Yoozbashizadeh, H. and Hosseini, H.R.M. (2019), "Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory", J. Therm. Anal. Calorim., 135, 1185-1196. https://doi.org/10.1007/s10973-018-7620-1.
- Zeng, Y., Zhu, X., Xie, J. and Chen, L. (2021), "Ionic liquid coated magnetic core/shell CoFe2O4@SiO2 nanoparticles for the separation/analysis of trace gold in water sample", Adv. Nano Res., 10(3), 295-312. https://doi.org/10.12989/anr.2021.10.3.295.
- Zenzen, R., Khatir, S., Belaidi, I., Le Thanh, C. and Wahab, M.A. (2020), "A modified transmissibility indicator and artificial neural network for damage identification and quantification in laminated composite structures", Compos. Struct., 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497.
- Zhao, W., Li, J., Liu, Z. and Guan, Y. (2009), "Thermal conductivities and viscosities of Al2O3-water nanofluids with low volume concentrations", Proceedings of the International Conference on Micro/Nanoscale Heat Transfer, Shanghai, China, December.
- Zhao, W.L., Zhu, B.J., Li, J.K., Guan, Y.X. and Li, D.D. (2011), "Suspension stability and thermal conductivity of oxide based nanofluids with low volume concentration", Adv. Mat. Res., 160-162, 802-808. https://doi.org/10.4028/www.scientific.net/AMR.160-162.802.
- Zhou, Z., Davoudi, E. and Vaferi. B. (2021), "Monitoring the effect of surface functionalization on the CO2 capture by graphene oxide/methyl diethanolamine nanofluids", J. Environ. Chem. Eng., 9(5) 106202. https://doi.org/10.1016/j.jece.2021.106202.
- Zhu, B.J., Zhao, W.L., Li, J.K., Guan, Y.X. and Li, D.D. (2011), "Thermophysical properties of Al2O3-water nanofluids", Mat. Sci. Forum., 688, 266-271. https://doi.org/10.4028/www.scientific.net/MSF.688.266.
- Zhu, D., Li, X., Wang, N., Wang, X., Gao, J. and Li, H. (2009), "Dispersion behavior and thermal conductivity characteristics of Al2O3-H2O nanofluids", Curr. Appl. Phys., 9, 131-139. https://doi.org/10.1016/j.cap.2007.12.008.
- Zhu, D., Wang, X. and Li, X. (2008), "Influence of SDBS on dispersive stability of Al2O3 nano-suspenions", Proceedings of the International Conference on Micro/Nanoscale Heat Transfer, Tainan, Taiwan, June.