DOI QR코드

DOI QR Code

Removal of ciprofloxacin from aqueous solution by activated carbon prepared from orange peel using zinc chloride

  • Koklu, Rabia (Sakarya University, Faculty of Engineering, Environmental Engineering Department) ;
  • Imamoglu, Mustafa (Sakarya University, Faculty of Arts & Sciences, Chemistry Department)
  • Received : 2021.11.24
  • Accepted : 2022.03.12
  • Published : 2022.05.25

Abstract

In this study, the removal of Ciprofloxacin (CPX) from aqueous solutions was investigated by a new activated carbon adsorbent prepared from orange peel (ACOP) with chemical activation using ZnCl2. The physicochemical properties of orange peel activated carbon were characterized by proximate and ultimate analysis, scanning electron microscopy, BET surface area determination and Fourier transformation infrared spectroscopic studies. According to Brunauer-Emmett-Teller isotherm and non-local-density functional theory, the cumulative surface area, pore volume and pore size of ACOP were determined as 1193 m2 g-1, 0.83 cc g-1 and 12.7 Å, respectively. The effects of contact time, pH, temperature and ACOP dose on the batch adsorption of CPX were studied. Adsorption equilibrium data of CPX with ACOP were found to be compatible with both the Langmuir and Freundlich isotherms. CPX adsorption capacity of ACOP was calculated as 181.8 mg g-1 using Langmuir isotherm. The CPX adsorption kinetics were found to be harmonious with the pseudo-second-order kinetic model. Conclusively, ACOP can be assessable as an effective adsorbent for the removal of ciprofloxacin (CPX) from aqueous solutions.

Keywords

References

  1. Agboola, O.S. and Bello, O.S. (2020), "Enhanced adsorption of ciprofloxacin from aqueous solutions using functionalized banana stalk", Biomass Convers. Biorefinery., 1-16. https://doi.org/10.1007/s13399-020-01038-9.
  2. Ahmed, M.J. and Theydan, S.K. (2014),"Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis", J. Taiwan Inst. Chem. Eng., 45(1), 219-226. https://doi.org/10.1016/j.jtice.2013.05.014.
  3. Al-Musawi, T.J., Mahvi, A.H., Khatibi, A.D. and Balarak, D. (2021), "Effective adsorption of ciprofloxacin antibiotic using powdered activated carbon magnetized by iron(III) oxide magnetic nanoparticles", J. Porous Mater., 28(3), 835-852. https://doi.org/10.1007/s10934-021-01039-7.
  4. Antonelli, R., Malpass, G.R.P., Da Silva, M.G.C. and Vieira, M.G.A. (2020), "Adsorption of ciprofloxacin onto thermally modified bentonite clay: Experimental design, characterization, and adsorbent regeneration", J. Environ. Chem. Eng., 8(6), 104553. https://doi.org/10.1016/j.jece.2020.104553.
  5. ASTM D5832-98 (1998), Standard test method for volatile matter content of activated carbon samples, ASTM International, West Conshohocken, Pennsylvania,U.S.A.
  6. ASTM D4607-94 (1999), Standard test method for determination of iodine number of activated carbon, ASTM International, West Conshohocken, Pennsylvania,U.S.A.
  7. ASTM D2867-99 (1999), Standard test methods for moisture in activated carbon, ASTM International, West Conshohocken, Pennsylvania,U.S.A.
  8. ASTM D2866-94 (2004), Standard test method for total ash content of activated carbon, ASTM International, West Conshohocken, Pennsylvania,U.S.A.
  9. Bal, D., O zer, C . and Imamoglu, M. (2021), "Green and ecofriendly biochar preparation from pumpkin peel and its usage as an adsorbent for methylene blue removal from aqueous solutions", Water Air Soil Pollut., 232(11). https://doi.org/10.1007/s11270-021-05411-w.
  10. Bediako, J.K., Lin, S., Sarkar, A.K., Zhao, Y., Choi, J.W., Song, M.H., Cho, C.W. and Yun, Y.S. (2020), "Evaluation of orange peel-derived activated carbons for treatment of dye-contaminated wastewater tailings", Environ. Sci. Pollut. Res., 27(1), 1053-1068. https://doi.org/10.1007/s11356-019-07031-8.
  11. Bhattacharya, P., Mukherjee, D., Dey, S., Ghosh, S. and Banerjee, S. (2019), "Development and performance evaluation of a novel CuO/TiO2 ceramic ultrafiltration membrane for ciprofloxacin removal", Mater. Chem. Phys., 229, 106-116. https://doi.org/10.1016/j.matchemphys.2019.02.094.
  12. Carabineiro, S.A.C., Thavorn-Amornsri, T., Pereira, M.F.R. and Figueiredo, J.L. (2011), "Adsorption of ciprofloxacin on surface-modified carbon materials", Water Res., 45(15), 4583-4591. https://doi.org/10.1016/j.watres.2011.06.008.
  13. Carmosini, N. and Lee, L. S. (2009), "Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials", Chemosphere, 77(6), 813-820. https://doi.org/10.1016/j.chemosphere.2009.08.003.
  14. Chandrasekaran, A., Patra, C., Narayanasamy, S. and Subbiah, S. (2020), "Adsorptive removal of Ciprofloxacin and Amoxicillin from single and binary aqueous systems using acid-activated carbon from Prosopis juliflora", Environ. Res., 188, 109825. https://doi.org/10.1016/j.envres.2020.109825.
  15. Chen, Y., Mastalerz, M. and Schimmelmann, A. (2012), "Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy", Int. J. Coal Geol., 104, 22-33. https://doi.org/10.1016/j.coal.2012.09.001.
  16. Darweesh, T.M. and Ahmed, M.J. (2017), "Adsorption of ciprofloxacin and norfloxacin from aqueous solution onto granular activated carbon in fixed bed column", Ecotox. Environ. Safe., 138, 139-145. https://doi.org/10.1016/j.ecoenv.2016.12.032.
  17. Duan, W., Wang, N., Xiao, W., Zhao, Y. and Zheng, Y. (2018), "Ciprofloxacin adsorption onto different micro-structured tourmaline, halloysite and biotite", J. Mol. Liq., 269, 874-881. https://doi.org/10.1016/j.molliq.2018.08.051.
  18. Dutta, A. (2017), Fourier Transform Infrared Spectroscopy In Spectroscopic Methods for Nanomaterials Characterization, Elsevier Inc.
  19. El-Shafey, E.S.I., Al-Lawati, H. and Al-Sumri, A.S. (2012), "Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets", J. Environ. Sci., 24(9), 1579-1586. https://doi.org/10.1016/S1001-0742(11)60949-2.
  20. El Nemr, A., Aboughaly, R.M., El Sikaily, A., Ragab, S., Masoud, M.S. and Ramadan, M.S. (2020), "Microporous nano-activated carbon type I derived from orange peel and its application for Cr(VI) removal from aquatic environment", Biomass Convers. Biorefinery, 1-19. https://doi.org/10.1007/s13399-020-00995-5.
  21. Fernandez, M.E., Nunell, G.V., Bonelli, P.R. and Cukierman, A.L. (2014), "Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes", Ind. Crop. Prod., 62, 437-445. https://doi.org/10.1016/j.indcrop.2014.09.015.
  22. Foo, K.Y. and Hameed, B.H. (2012), "Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation", Bioresource Technol., 104, 679-686. https://doi.org/10.1016/j.biortech.2011.10.005.
  23. Freundlich, H.M.F. (1906), "Over the adsorption in solution", J. Phys. Chem., 57, 385-471.
  24. Ganesan, S., Amirthalingam, M., Arivalagan, P., Govindan, S., Palanisamy, S., Lingassamy, A.P. and Ponnusamy, V.K. (2019), "Absolute removal of ciprofloxacin and its degraded byproducts in aqueous solution using an efficient electrochemical oxidation process coupled with adsorption treatment technique", J. Environ. Manage., 245(100), 409-417. https://doi.org/10.1016/j.jenvman.2019.05.092.
  25. Gao, Y., Yue, Q., Gao, B. and Sun, Y. (2015), "Optimization preparation of activated carbon from Enteromorpha prolifra using response surface methodology and its adsorption studies of fluoroquinolone antibiotics", Desalin. Water Treat., 55(3), 624-636. https://doi.org/10.1080/19443994.2014.922442.
  26. Githinji, L.J.M., Musey, M.K. and Ankumah, R.O. (2011), "Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater", Water Air Soil Pollut., 219(1-4), 191-201. https://doi.org/10.1007/s11270-010-0697-1.
  27. Ho, Y.S., McKay, G. (1999), "Pseudo-second order model for sorption processes", Proc. Biochem., 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  28. Huang, L., Wang, M., Shi, C., Huang, J. and Zhang, B. (2014), "Adsorption of tetracycline and ciprofloxacin on activated carbon prepared from lignin with H3PO4 activation", Desalin. Water Treat., 52(13-15), 2678-2687. https://doi.org/10.1080/19443994.2013.833873.
  29. Igwegbe, C.A., Oba, S.N., Aniagor, C.O., Adeniyi, A.G. and Ighalo, J.O. (2021), "Adsorption of ciprofloxacin from water: A comprehensive review", J. Ind. Eng. Chem., 93, 57-77. https://doi.org/10.1016/j.jiec.2020.09.023.
  30. Imamoglu, M., Sahin, H., Aydin, S., Tosunoglu, F., Yilmaz, H. and Yildiz, S.Z. (2016). "Investigation of Pb(II) adsorption on a novel activated carbon prepared from hazelnut husk by K2CO3 activation", Desalin. Water Treat., 57(10), 4587-96. https://doi.org/10.1080/19443994.2014.995135.
  31. Imamoglu, M., Ozturk, A., Aydin, S., Manzak, A., Gundogdu, A. and Duran, C. (2018), "Adsorption of Cu(II) ions from aqueous solution by hazelnut husk activated carbon prepared with potassium acetate" J. Disper. Sci. Technol., 39(8), 1144-1148. https://doi.org/10.1080/01932691.2017.1385479.
  32. Kiraz, A., Canpolat, O., Erkan, E.F. and Ozer, C. (2019), "Artificial neural networks modeling for the prediction of Pb(II) adsorption", Int. J. Environ. Sci. Technol., 16(9), 5079-5086. https://doi.org/10.1007/s13762-018-1798-4.
  33. Lagergren, S. (1898), "About the theory of so-called adsorption of soluble substances", Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1-39.
  34. Lam, S.S., Liew, R.K., Wong, Y.M., Yek, P.N.Y., Ma, N.L., Lee, C.L. and Chase, H.A. (2017), "Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent", J. Clean. Prod., 162, 1376-1387. https://doi.org/10.1016/j.jclepro.2017.06.131.
  35. Langmuir, I. (1918), "The adsorption of gases on plane surfaces of glass, mica and platinum", J. Am. Chem. Soc., 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004
  36. Maheshwari, M., Vyas, R.K. and Sharma, M. (2013), "Kinetics, equilibrium and thermodynamics of ciprofloxacin hydrochloride removal by adsorption on coal fly ash and activated alumina", Desalin. Water Treat., 51(37-39), 7241-7254. https://doi.org/10.1080/19443994.2013.775076.
  37. Mansour, F., Al-Hindi, M., Yahfoufi, R., Ayoub, G.M. and Ahmad, M.N. (2018), "The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: A review", Rev. Environ. Sci. Biotechnol., 17(1), 109-145. https://doi.org/10.1007/s11157-017-9456-8.
  38. Mekhamer, W. and Al-Tamimi, S. (2019), "Removal of ciprofloxacin from simulated wastewater by pomegranate peels", Environ. Sci. Pollut. Res., 26(3), 2297-2304. https://doi.org/10.1007/s11356-018-3639-x.
  39. Mohammed, A.A., Al-Musawi, T.J., Kareem, S.L., Zarrabi, M. and Al-Ma'abreh, A.M. (2019), "Simultaneous adsorption of tetracycline, amoxicillin, and ciprofloxacin by pistachio shell powder coated with zinc oxide nanoparticles", Arab. J. Chem., 13(3), 4629-4643. https://doi.org/10.1016/j.arabjc.2019.10.010.
  40. Mondal, S.K., Saha, A.K. and Sinha, A. (2018), "Removal of ciprofloxacin using modified advanced oxidation processes: Kinetics, pathways and process optimization", J. Clean. Prod., 171, 1203-1214. https://doi.org/10.1016/j.jclepro.2017.10.091.
  41. Movasaghi, Z., Yan, B. and Niu, C. (2019), "Adsorption of ciprofloxacin from water by pretreated oat hulls: Equilibrium, kinetic, and thermodynamic studies", Ind. Crop Prod., 127, 237-250. https://doi.org/10.1016/j.indcrop.2018.10.051.
  42. Munagapati, V.S. and Kim, D.S. (2016), "Adsorption of anionic azo dye Congo Red from aqueous solution by Cationic Modified Orange Peel Powder", J. Mol. Liq., 220, 540-548. https://doi.org/10.1016/j.molliq.2016.04.119.
  43. Neimark, A.V. (1995), "In FundamentaZs oflnhomogeneous Fluids", J. Chem. Soc., Faraday Trans, 11(1), 2857.
  44. Ozer, C. (2020), "Kinetic and equilibrium studies on the batch removal of methylene blue from aqueous solution by using natural magnetic sand", Desalin. Water Treat., 201, 393-403. https://doi.org/10.5004/dwt.2020.26204.
  45. Ozturk, N., Yazar, M., Gundogdu, A., Duran, C., Senturk, H. B. and Soylak, M. (2021), "Application of cherry laurel seeds activated carbon as a new adsorbent for Cr(VI) removal", Membr. Water Treat., 12(1), 11-21. https://doi.org/10.12989/mwt.2021.12.1.011.
  46. Palacio, D.A., Rivas, B.L. and Urbano, B.F. (2018), "Ultrafiltration membranes with three water-soluble polyelectrolyte copolymers to remove ciprofloxacin from aqueous systems", Chem. Eng. J., 351(), 85-93. https://doi.org/10.1016/j.cej.2018.06.099.
  47. Penafiel, Maria E., Matesanz, J.M., Vanegas, E., Bermejo, D., Mosteo, R. and Ormad, M.P. (2021), "Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon", Sci. Total Environ., 750. https://doi.org/10.1016/j.scitotenv.2020.141498.
  48. Penafiel, M.E., Vanegas, E., Bermejo, D., Matesanz, J.M. and Ormad, M.P. (2019), "Organic residues as adsorbent for the removal of ciprofloxacin from aqueous solution", Hyperfine Interact., 240(1). https://doi.org/10.1007/s10751-019-1612-9.
  49. Peng, X., Hu, F., Zhang, T., Qiu, F. and Dai, H. (2018), "Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study", Bioresource Technol., 249, 924-934. https://doi.org/10.1016/j.biortech.2017.10.095.
  50. Pua, F.L., Sajab, M.S., Chia, C.H., Zakaria, S., Rahman, I.A. and Salit, M.S. (2013), "Alkaline-treated cocoa pod husk as adsorbent for removing methylene blue from aqueous solutions", J. Environ. Chem. Eng., 1(3), 460-465. https://doi.org/10.1016/j.jece.2013.06.012.
  51. Ravikovitch, P.I. and Neimark, A.V. (2001), "Characterization of micro- and mesoporosity in SBA-15 materials from adsorption data by the NLDFT method", J. Phys. Chem. B, 105(29), 6817-6823. https://doi.org/10.1021/jp010621u.
  52. Sayin, M., Can, M., Imamoglu, M. and Arslan, M. (2017), "Highly efficient adsorption of Rh(III) from chloride containing solutions by triazine polyamine polymer", Water Air Soil Pollut., 228(3). https://doi.org/10.1007/s11270-017-3284-x.
  53. Usanmaz, S., O zer, C. and Imamoglu, M. (2021), "Removal of Cu(II), Ni(II) and Co(II) ions from aqueous solutions by hazelnut husks carbon activated with phosphoric acid", Desalin. Water Treat., 227, 300-308. https://doi.org/10.5004/dwt.2021.27303.
  54. Wang, M., Li, G., Huang, L., Xue, J., Liu, Q., Bao, N. and Huang, J. (2017), "Study of ciprofloxacin adsorption and regeneration of activated carbon prepared from Enteromorpha prolifera impregnated with H3PO4 and sodium benzenesulfonate", Ecotox. Environ. Safe., 139, 36-42. https://doi.org/10.1016/j.ecoenv.2017.01.006.
  55. Wang, Y.X., Ngo, H.H. and Guo, W.S. (2015), "Preparation of a specific bamboo based activated carbon and its application for ciprofloxacin removal", Sci. Total Environ., 533, 32-39. https://doi.org/10.1016/j.scitotenv.2015.06.087.
  56. Zhang, B., Han, X., Gu, P., Fang, S. and Bai, J. (2017), "Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk", J. Mol. Liq., 238, 316-325. https://doi.org/10.1016/j.molliq.2017.04.022.
  57. Zhang, C.L., Qiao, G.L., Zhao, F. and Wang, Y. (2011), "Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution", J. Mol. Liq., 163(1), 53-56. https://doi.org/10.1016/j.molliq.2011.07.005.