References
- A. Kaboorani. (2017). Characterizing water sorption and diffusion properties of wood/plastic composites as a function of formulation design. Construction and Building Materials, 136, 164-172. DOI : 10.1016/j.conbuildmat.2016.12.120
- J. T. Benthien, H. Thoemen. (2012). Effects of raw materials and process parameters on the physical and mechanical properties of flat pressed WPC panels. Journal Composites Part A: Applied Science and Manufacturing, 43(4), 570-576. DOI : 10.1016/j.compositesa.2011.12.028
- S.-J. Chun & S.-Y. Lee. (2014). Thermal Stability of Polypropylene-Based Wood Plastic Composites by The Addition of Ammonium Polyphosphate. Journal of The Korean Wood Science and Technology, 42(6), 682-690. DOI : 10.5658/WOOD.2014.42.6.682
- B. Nornberg, E. Borchardt, G. A. Luinstra & J. Fromm. (2014). Wood plastic composites from poly (propylene carbonate) and poplar wood flour-Mechanical, thermal and morphological properties. European Polymer Journal, 51, 167-176. DOI : 10.1016/j.eurpolymj.2013.11.008
- C. Guo, L. Zhou & J. Lv. (2013). Flame-Retardant and Mechanical Properties of Wood Flour-Polypropylene Composites. Polymers and Polymer Composites 21(7), 449-456. DOI : 10.1177/096739111302100706
- A. Schirp & S. Su. (2016). Effectiveness of pre-treated wood particles and halogen-free flame retardants used in wood-plastic composites. Polymer Degradation and Stability, 126, 81-92. DOI : 10.1016/j.polymdegradstab.2016.01.016
- E. Baysal, M. K. Yalinkilic, M. Altinok, A. Sonmez, H. Peker & M. Colak. (2007). Some physical, biological, mechanical, and fire properties of wood polymer composite (WPC) pretreated with boric acid and borax mixture. Construction and Building Materials, 21(9), 1879-1885. DOI : 10.1016/j.conbuildmat.2006.05.026
- T. Umemura, Y. Arao, S. Nakamura, Y. Tomita & T. Tanaka. (2014). Synergy effects of wood flour and fire retardants in flammability of wood-plastic composites. Energy Procedia 56, 48-56. DOI : 10.1016/j.egypro.2014.07.130
- M. Sain, S. H. Park, F. Suhara & S. Law. (2004). Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide. Polymer Degradation and Stability 83, 363-367. DOI : 10.1016/S0141-3910(03)00280-5
- J. Reuter, L. Greiner, P. Kukla & M. Doring, (2020). Efficient flame retardant interplay of unsaturated polyester resin formulations based on ammonium polyphosphate. Polymer Degradation and Stability, 178, 109134. DOI : 10.1016/j.polymdegradstab.2020.109134
- P. Bazant et al. (2014). Wood flour modified by hierarchical Ag/ZnO as potential filler for wood-plastic composites with enhanced surface antibacterial performance. Industrial Crops and Products, 62, 179-187. DOI : 10.1016/j.indcrop.2014.08.028
- Y. Fang et al, (2022). The influence of zinc compounds on thermal stability and flame retardancy of wood flour polyvinyl chloride composites. Construction and Building Materials, 320, 126203. DOI : 10.1016/j.conbuildmat.2021.126203
- Y. Fang, Q. Wang, C. Guo, Y. Song & P. A. Cooper. (2013). Effect of zinc borate and wood flour on thermal degradation and fire retardancy of Polyvinyl chloride (PVC) composites. Journal of Analytical and Applied Pyrolysis, 100, 230-236. DOI : 10.1016/j.jaap.2012.12.028
- Y. Lu, C. Wu & S. Xu. (2018). Mechanical, thermal and flame retardant properties of magnesium hydroxide filled poly(vinyl chloride) composites: The effect of filler shape. Composites Part A: Applied Science and Manufacturing, 113, 1-11. DOI : 10.1016/j.compositesa.2018.07.012
- P. Plagemann, J. Weise & A. Zockoll. (2013). Zinc-magnesium-pigment rich coatings for corrosion protection of aluminum alloys. Progress in Organic Coatings, 76(4), 616-625. DOI : 10.1016/j.porgcoat.2012.12.001