DOI QR코드

DOI QR Code

Preparation and Characterizations of Wood Plastic Composite Panel Fabricated with Chamaecyparis obtusa Wood Flour

편백나무 목분을 첨가한 합성목재 패널의 제조 및 특성 평가

  • Kim, Soo-Jong (Department of Advanced Materials and Chemical Engineering, Halla University)
  • 김수종 (한라대학교 신소재화학공학과)
  • Received : 2022.02.28
  • Accepted : 2022.05.20
  • Published : 2022.05.28

Abstract

Wood Plastic Composite(WPC) has been mostly used for outdoor purposes such as deck materials and trails so far. In this study, WPC panels with improved antibacterial properties, total volatile organic compound emissions (TVOC), and flame retardant were manufactured to use Wood Plastic Compound as interior materials for indoor use. WPC compound was prepared by mixing Chamaecyparis obtusa wood flour with high density polyethylene(HDPE). The prepared WPC compound exhibited excellent antibacterial and antifungal properties, and the total volatile organic compound emission(TVOC) was 0.062 mg/m2·h. The WPC panel(303mm×606mm×10mm) manufactured by a twin screw extruder with the manufactured compound achieved the flame retardant grade 2 standard of KS F 2271.

데크재, 산책로 등 옥외용도로 대부분 사용되고 있는 합성목재(Wood Plastic Compound;WPC)를 실내 용도의 건축용 내장재로 사용하기 위하여, 항균성, 총 휘발성 유기화합물 배출량(TVOC), 난연성 등이 개선된 WPC 패널을 제조하였다. 고밀도 폴리에틸렌(HDPE)과 편백나무 목분(Chamacyparis obtusa wood flour), 항균제 및 난연제 등의 첨가제를 혼합한 후 압출 성형하여 합성목재(Wood Plastic Composite) 컴파운드 펠렛을 제조하였다. 이 WPC 컴파운드 펠렛을 이축압출기를 사용하여 제조한 합성목재 패널(303mm×606mm×10mm)은 우수한 항균 및 항진균 특성을 나타냈다. 또한 패널의 총 휘발성 유기화합물 배출량(TVOC)은 0.062mg/m2·h 였으며, KS F 2271의 난연성 2등급 표준을 달성하였다.

Keywords

References

  1. A. Kaboorani. (2017). Characterizing water sorption and diffusion properties of wood/plastic composites as a function of formulation design. Construction and Building Materials, 136, 164-172. DOI : 10.1016/j.conbuildmat.2016.12.120
  2. J. T. Benthien, H. Thoemen. (2012). Effects of raw materials and process parameters on the physical and mechanical properties of flat pressed WPC panels. Journal Composites Part A: Applied Science and Manufacturing, 43(4), 570-576. DOI : 10.1016/j.compositesa.2011.12.028
  3. S.-J. Chun & S.-Y. Lee. (2014). Thermal Stability of Polypropylene-Based Wood Plastic Composites by The Addition of Ammonium Polyphosphate. Journal of The Korean Wood Science and Technology, 42(6), 682-690. DOI : 10.5658/WOOD.2014.42.6.682
  4. B. Nornberg, E. Borchardt, G. A. Luinstra & J. Fromm. (2014). Wood plastic composites from poly (propylene carbonate) and poplar wood flour-Mechanical, thermal and morphological properties. European Polymer Journal, 51, 167-176. DOI : 10.1016/j.eurpolymj.2013.11.008
  5. C. Guo, L. Zhou & J. Lv. (2013). Flame-Retardant and Mechanical Properties of Wood Flour-Polypropylene Composites. Polymers and Polymer Composites 21(7), 449-456. DOI : 10.1177/096739111302100706
  6. A. Schirp & S. Su. (2016). Effectiveness of pre-treated wood particles and halogen-free flame retardants used in wood-plastic composites. Polymer Degradation and Stability, 126, 81-92. DOI : 10.1016/j.polymdegradstab.2016.01.016
  7. E. Baysal, M. K. Yalinkilic, M. Altinok, A. Sonmez, H. Peker & M. Colak. (2007). Some physical, biological, mechanical, and fire properties of wood polymer composite (WPC) pretreated with boric acid and borax mixture. Construction and Building Materials, 21(9), 1879-1885. DOI : 10.1016/j.conbuildmat.2006.05.026
  8. T. Umemura, Y. Arao, S. Nakamura, Y. Tomita & T. Tanaka. (2014). Synergy effects of wood flour and fire retardants in flammability of wood-plastic composites. Energy Procedia 56, 48-56. DOI : 10.1016/j.egypro.2014.07.130
  9. M. Sain, S. H. Park, F. Suhara & S. Law. (2004). Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide. Polymer Degradation and Stability 83, 363-367. DOI : 10.1016/S0141-3910(03)00280-5
  10. J. Reuter, L. Greiner, P. Kukla & M. Doring, (2020). Efficient flame retardant interplay of unsaturated polyester resin formulations based on ammonium polyphosphate. Polymer Degradation and Stability, 178, 109134. DOI : 10.1016/j.polymdegradstab.2020.109134
  11. P. Bazant et al. (2014). Wood flour modified by hierarchical Ag/ZnO as potential filler for wood-plastic composites with enhanced surface antibacterial performance. Industrial Crops and Products, 62, 179-187. DOI : 10.1016/j.indcrop.2014.08.028
  12. Y. Fang et al, (2022). The influence of zinc compounds on thermal stability and flame retardancy of wood flour polyvinyl chloride composites. Construction and Building Materials, 320, 126203. DOI : 10.1016/j.conbuildmat.2021.126203
  13. Y. Fang, Q. Wang, C. Guo, Y. Song & P. A. Cooper. (2013). Effect of zinc borate and wood flour on thermal degradation and fire retardancy of Polyvinyl chloride (PVC) composites. Journal of Analytical and Applied Pyrolysis, 100, 230-236. DOI : 10.1016/j.jaap.2012.12.028
  14. Y. Lu, C. Wu & S. Xu. (2018). Mechanical, thermal and flame retardant properties of magnesium hydroxide filled poly(vinyl chloride) composites: The effect of filler shape. Composites Part A: Applied Science and Manufacturing, 113, 1-11. DOI : 10.1016/j.compositesa.2018.07.012
  15. P. Plagemann, J. Weise & A. Zockoll. (2013). Zinc-magnesium-pigment rich coatings for corrosion protection of aluminum alloys. Progress in Organic Coatings, 76(4), 616-625. DOI : 10.1016/j.porgcoat.2012.12.001