DOI QR코드

DOI QR Code

Promising candidate cerebrospinal fluid biomarkers of seizure disorder, infection, inflammation, tumor, and traumatic brain injury in pediatric patients

  • Kim, Seh Hyun (Department of Pediatrics, Chung-Ang University Hospital) ;
  • Chae, Soo Ahn (Department of Pediatrics, Chung-Ang University Hospital)
  • 투고 : 2021.02.28
  • 심사 : 2021.07.11
  • 발행 : 2022.02.15

초록

Cerebrospinal fluid (CSF) is a dynamic metabolically active body fluid that has many important roles and is commonly analyzed in pediatric patients, mainly to diagnose central nervous system infection and inflammation disorders. CSF components have been extensively evaluated as biomarkers of neurological disorders in adult patients. Circulating microRNAs in CSF are a promising class of biomarkers for various neurological diseases. Due to the complexity of pediatric neurological disorders and difficulty in acquiring CSF samples from pediatric patients, there are challenges in developing CSF biomarkers of pediatric neurological disorders. This review aimed to provide an overview of novel CSF biomarkers of seizure disorders, infection, inflammation, tumor, traumatic brain injuries, intraventricular hemorrhage, and congenital hydrocephalus exclusively observed in pediatric patients.

키워드

참고문헌

  1. Shahim P, Mansson JE, Darin N, Zetterberg H, Mattsson N. Cerebrospinal fluid biomarkers in neurological diseases in children. Eur J Paediatr Neurol 2013;17:7-13. https://doi.org/10.1016/j.ejpn.2012.09.005
  2. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018;38:1-211.
  3. Avery RA. Interpretation of lumbar puncture opening pressure measurements in children. J Neuroophthalmol 2014;34:284-7. https://doi.org/10.1097/WNO.0000000000000154
  4. Janssens E, Aerssens P, Alliet P, Gillis P, Raes M. Post-dural puncture headaches in children. A literature review. Eur J Pediatr 2003;162:117-21. https://doi.org/10.1007/s00431-002-1122-6
  5. Nakajima M, Miyajima M, Ogino I, Akiba C, Sugano H, Hara T, et al. Cerebrospinal fluid biomarkers for prognosis of long-term cognitive treatment outcomes in patients with idiopathic normal pressure hydrocephalus. J Neurol Sci 2015;357:88-95. https://doi.org/10.1016/j.jns.2015.07.001
  6. Laitera T, Kurki MI, Pursiheimo JP, Zetterberg H, Helisalmi S, Rauramaa T, et al. The expression of transthyretin and amyloid-beta protein precursor is altered in the brain of idiopathic normal pressure hydrocephalus patients. J Alzheimers Dis 2015;48:959-68. https://doi.org/10.3233/JAD-150268
  7. Marklund N, Farrokhnia N, Hanell A, Vanmechelen E, Enblad P, Zetterberg H, et al. Monitoring of beta-amyloid dynamics after human traumatic brain injury. J Neurotrauma 2014;31:42-55. https://doi.org/10.1089/neu.2013.2964
  8. Steinacker P, Fang L, Kuhle J, Petzold A, Tumani H, Ludolph AC, et al. Soluble beta-amyloid precursor protein is related to disease progression in amyotrophic lateral sclerosis. PLoS One 2011;6:e23600. https://doi.org/10.1371/journal.pone.0023600
  9. Limbrick DD Jr, Castaneyra-Ruiz L, Han RH, Berger D, McAllister JP, Morales DM. Cerebrospinal fluid biomarkers of pediatric hydrocephalus. Pediatr Neurosurg 2017;52:426-35. https://doi.org/10.1159/000477175
  10. Zorofchian S, Iqbal F, Rao M, Aung PP, Esquenazi Y, Ballester LY. Circulating tumour DNA, microRNA and metabolites in cerebrospinal fluid as biomarkers for central nervous system malignancies. J Clin Pathol 2019;72:271-80. https://doi.org/10.1136/jclinpath-2018-205414
  11. van den Berg MMJ, Krauskopf J, Ramaekers JG, Kleinjans JCS, Prickaerts J, Briede JJ. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog Neurobiol 2020;185:101732. https://doi.org/10.1016/j.pneurobio.2019.101732
  12. Takousis P, Sadlon A, Schulz J, Wohlers I, Dobricic V, Middleton L, et al. Differential expression of microRNAs in Alzheimer's disease brain, blood, and cerebrospinal fluid. Alzheimers Dement 2019;15:1468-77. https://doi.org/10.1016/j.jalz.2019.06.4952
  13. Goh SY, Chao YX, Dheen ST, Tan EK, Tay SS. Role of MicroRNAs in Parkinson's disease. Int J Mol Sci 2019;20:5649. https://doi.org/10.3390/ijms20225649
  14. Raoof R, Jimenez-Mateos EM, Bauer S, Tackenberg B, Rosenow F, Lang J, et al. Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Sci Rep 2017;7:3328. https://doi.org/10.1038/s41598-017-02969-6
  15. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11. https://doi.org/10.1038/35888
  16. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33. https://doi.org/10.1016/j.cell.2009.01.002
  17. Wang Z. MicroRNA: a matter of life or death. World J Biol Chem 2010;1:41-54. https://doi.org/10.4331/wjbc.v1.i4.41
  18. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008;18:997-1006. https://doi.org/10.1038/cr.2008.282
  19. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 2008;105:10513-8. https://doi.org/10.1073/pnas.0804549105
  20. Sheinerman KS, Umansky SR. Circulating cell-free microRNA as biomarkers for screening, diagnosis and monitoring of neurodegenerative diseases and other neurologic pathologies. Front Cell Neurosci 2013;7:150. https://doi.org/10.3389/fncel.2013.00150
  21. Bonadio WA. The cerebrospinal fluid: physiologic aspects and alterations associated with bacterial meningitis. Pediatr Infect Dis J 1992;11:423-31. https://doi.org/10.1097/00006454-199206000-00001
  22. Bonadio W. Pediatric lumbar puncture and cerebrospinal fluid analysis. J Emerg Med 2014;46:141-50. https://doi.org/10.1016/j.jemermed.2013.08.056
  23. Statz A, Felgenhauer K. Development of the blood-CSF barrier. Dev Med Child Neurol 1983;25:152-61. https://doi.org/10.1111/j.1469-8749.1983.tb13738.x
  24. Rosenling T, Slim CL, Christin C, Coulier L, Shi S, Stoop MP, et al. The effect of preanalytical factors on stability of the proteome and selected metabolites in cerebrospinal fluid (CSF). J Proteome Res 2009;8:5511-22. https://doi.org/10.1021/pr9005876
  25. Teunissen CE, Petzold A, Bennett JL, Berven FS, Brundin L, Comabella M, et al. A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology 2009;73:1914-22. https://doi.org/10.1212/WNL.0b013e3181c47cc2
  26. Mattsson N, Savman K, Osterlundh G, Blennow K, Zetterberg H. Converging molecular pathways in human neural development and degeneration. Neurosci Res 2010;66:330-2. https://doi.org/10.1016/j.neures.2009.11.012
  27. Cameron S, Gillio-Meina C, Ranger A, Choong K, Fraser DD. Collection and analyses of cerebrospinal fluid for pediatric translational research. Pediatr Neurol 2019;98:3-17. https://doi.org/10.1016/j.pediatrneurol.2019.05.011
  28. Morris M, Maeda S, Vossel K, Mucke L. The many faces of tau. Neuron 2011;70:410-26. https://doi.org/10.1016/j.neuron.2011.04.009
  29. Tanuma N, Miyata R, Kumada S, Kubota M, Takanashi J, Okumura A, et al. The axonal damage marker tau protein in the cerebrospinal fluid is increased in patients with acute encephalopathy with biphasic seizures and late reduced diffusion. Brain Dev 2010;32:435-9. https://doi.org/10.1016/j.braindev.2009.07.004
  30. Gurnett CA, Landt M, Wong M. Analysis of cerebrospinal fluid glial fibrillary acidic protein after seizures in children. Epilepsia 2003;44:1455-8. https://doi.org/10.1046/j.1528-1157.2003.21603.x
  31. Medana IM, Idro R, Newton CR. Axonal and astrocyte injury markers in the cerebrospinal fluid of Kenyan children with severe malaria. J Neurol Sci 2007;258:93-8. https://doi.org/10.1016/j.jns.2007.03.005
  32. Bignami A, Eng LF, Dahl D, Uyeda CT. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 1972;43:429-35. https://doi.org/10.1016/0006-8993(72)90398-8
  33. Kristjansdottir R, Uvebrant P, Rosengren L. Glial fibrillary acidic protein and neurofilament in children with cerebral white matter abnormalities. Neuropediatrics 2001;32:307-12. https://doi.org/10.1055/s-2001-20406
  34. Barger SW, Van Eldik LJ, Mattson MP. S100 beta protects hippocampal neurons from damage induced by glucose deprivation. Brain Res 1995;677:167-70. https://doi.org/10.1016/0006-8993(95)00160-R
  35. Kim SH, Yun SW, Kim HR, Chae SA. Exosomal microRNA expression profiles of cerebrospinal fluid in febrile seizure patients. Seizure 2020;81:47-52. https://doi.org/10.1016/j.seizure.2020.07.015
  36. Li ZY, Dang D, Wu H. Next-generation sequencing of cerebrospinal fluid for the diagnosis of unexplained central nervous system infections. Pediatr Neurol 2021;115:10-20. https://doi.org/10.1016/j.pediatrneurol.2020.10.011
  37. Molero-Luis M, Casas-Alba D, Orellana G, Ormazabal A, Sierra C, Oliva C, et al. Cerebrospinal fluid neopterin as a biomarker of neuroinflammatory diseases. Sci Rep 2020;10:18291. https://doi.org/10.1038/s41598-020-75500-z
  38. Dale RC, Brilot F, Fagan E, Earl J. Cerebrospinal fluid neopterin in paediatric neurology: a marker of active central nervous system inflammation. Dev Med Child Neurol 2009;51:317-23. https://doi.org/10.1111/j.1469-8749.2008.03225.x
  39. Molero-Luis M, Fernandez-Urena S, Jordan I, Serrano M, Ormazabal A, Garcia-Cazorla A, et al. Cerebrospinal fluid neopterin analysis in neuropediatric patients: establishment of a new cut off-value for the identification of inflammatory-immune mediated processes. PLoS One 2013;8:e83237. https://doi.org/10.1371/journal.pone.0083237
  40. Ghisoni K, Martins Rde P, Barbeito L, Latini A. Neopterin as a potential cytoprotective brain molecule. J Psychiatr Res 2015;71:134-9. https://doi.org/10.1016/j.jpsychires.2015.10.003
  41. Macdonald-Laurs E, Koirala A, Britton PN, Rawlinson W, Hiew CC, McRae J, et al. CSF neopterin, a useful biomarker in children presenting with influenza associated encephalopathy? Eur J Paediatr Neurol 2019;23:204-13. https://doi.org/10.1016/j.ejpn.2018.09.009
  42. Casas-Alba D, Valero-Rello A, Muchart J, Armangue T, Jordan I, Cabrerizo M, et al. Cerebrospinal fluid neopterin in children with enterovirus-related brainstem encephalitis. Pediatr Neurol 2019;96:70-3. https://doi.org/10.1016/j.pediatrneurol.2019.01.024
  43. Yamanaka G, Ishii C, Kawashima H, Oana S, Miyajima T, Hoshika A. Cerebrospinal fluid Diacron-Reactive Oxygen Metabolite levels in pediatric patients with central nervous system diseases. Pediatr Neurol 2008;39:80-4. https://doi.org/10.1016/j.pediatrneurol.2008.04.006
  44. Shahim P, Darin N, Andreasson U, Blennow K, Jennions E, Lundgren J, et al. Cerebrospinal fluid brain injury biomarkers in children: a multicenter study. Pediatr Neurol 2013;49:31-9.e2. https://doi.org/10.1016/j.pediatrneurol.2013.02.015
  45. Pohl D, Rostasy K, Reiber H, Hanefeld F. CSF characteristics in early-onset multiple sclerosis. Neurology 2004;63:1966-7. https://doi.org/10.1212/01.WNL.0000144352.67102.BC
  46. Pan D, Pan M, Xu YM. Mir-29a expressions in peripheral blood mononuclear cell and cerebrospinal fluid: diagnostic value in patients with pediatric tuberculous meningitis. Brain Res Bull 2017;130:231-5. https://doi.org/10.1016/j.brainresbull.2017.01.013
  47. Pohl D, Alper G, Van Haren K, Kornberg AJ, Lucchinetti CF, Tenembaum S, et al. Acute disseminated encephalomyelitis: updates on an inflammatory CNS syndrome. Neurology 2016;87:S38-45. https://doi.org/10.1212/wnl.0000000000002825
  48. Hung PC, Wang HS, Chou ML, Lin KL, Hsieh MY, Wong AM. Acute disseminated encephalomyelitis in children: a single institution experience of 28 patients. Neuropediatrics 2012;43:64-71. https://doi.org/10.1055/s-0032-1309309
  49. Leake JA, Albani S, Kao AS, Senac MO, Billman GF, Nespeca MP, et al. Acute disseminated encephalomyelitis in childhood: epidemiologic, clinical and laboratory features. Pediatr Infect Dis J 2004;23:756-64. https://doi.org/10.1097/01.inf.0000133048.75452.dd
  50. Tenembaum S, Chamoles N, Fejerman N. Acute disseminated encephalomyelitis: a long-term follow-up study of 84 pediatric patients. Neurology 2002;59:1224-31. https://doi.org/10.1212/WNL.59.8.1224
  51. Alper G, Heyman R, Wang L. Multiple sclerosis and acute disseminated encephalomyelitis diagnosed in children after long-term follow-up: comparison of presenting features. Dev Med Child Neurol 2009;51:480-6. https://doi.org/10.1111/j.1469-8749.2008.03136.x
  52. Pavone P, Pettoello-Mantovano M, Le Pira A, Giardino I, Pulvirenti A, Giugno R, et al. Acute disseminated encephalomyelitis: a long-term prospective study and meta-analysis. Neuropediatrics 2010;41:246-55. https://doi.org/10.1055/s-0031-1271656
  53. Erol I, Ozkale Y, Alkan O, Alehan F. Acute disseminated encephalomyelitis in children and adolescents: a single center experience. Pediatr Neurol 2013;49:266-73. https://doi.org/10.1016/j.pediatrneurol.2013.03.021
  54. Sinclair AJ, Wienholt L, Tantsis E, Brilot F, Dale RC. Clinical association of intrathecal and mirrored oligoclonal bands in paediatric neurology. Dev Med Child Neurol 2013;55:71-5. https://doi.org/10.1111/j.1469-8749.2012.04443.x
  55. Waldman A, O'Connor E, Tennekoon G. Childhood multiple sclerosis: a review. Ment Retard Dev Disabil Res Rev 2006;12:147-56. https://doi.org/10.1002/mrdd.20105
  56. Duquette P, Murray TJ, Pleines J, Ebers GC, Sadovnick D, Weldon P, et al. Multiple sclerosis in childhood: clinical profile in 125 patients. J Pediatr 1987;111:359-63. https://doi.org/10.1016/S0022-3476(87)80454-7
  57. Galardi M, Butler R, Lui A, Cole J, Mikesell R, Salter A, et al. Cerebrospinal fluid (CSF) neurofilament and CXCL-13 levels in children with demyelinating disease (P2.307). Neurology 2018;90(15 Supplement): P2.307.
  58. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncol 2018;20:iv1-86. https://doi.org/10.1093/neuonc/nox229
  59. Tang K, Gardner S, Snuderl M. The role of liquid biopsies in pediatric brain tumors. J Neuropathol Exp Neurol 2020;79:934-40. https://doi.org/10.1093/jnen/nlaa068
  60. Haber DA, Gray NS, Baselga J. The evolving war on cancer. Cell 2011;145:19-24. https://doi.org/10.1016/j.cell.2011.03.026
  61. Pan W, Gu W, Nagpal S, Gephart MH, Quake SR. Brain tumor mutations detected in cerebral spinal fluid. Clin Chem 2015;61:514-22. https://doi.org/10.1373/clinchem.2014.235457
  62. Weston CL, Glantz MJ, Connor JR. Detection of cancer cells in the cerebrospinal fluid: current methods and future directions. Fluids Barriers CNS 2011;8:14. https://doi.org/10.1186/2045-8118-8-14
  63. Panditharatna E, Kilburn LB, Aboian MS, Kambhampati M, Gordish-Dressman H, Magge SN, et al. Clinically relevant and minimally invasive tumor surveillance of pediatric diffuse midline gliomas using patient-derived liquid biopsy. Clin Cancer Res 2018;24:5850-9. https://doi.org/10.1158/1078-0432.CCR-18-1345
  64. de Bont JM, van Doorn J, Reddingius RE, Graat GH, Passier MM, den Boer ML, et al. Various components of the insulin-like growth factor system in tumor tissue, cerebrospinal fluid and peripheral blood of pediatric medulloblastoma and ependymoma patients. Int J Cancer 2008;123:594-600. https://doi.org/10.1002/ijc.23558
  65. van Doorn J, Gilhuis HJ, Koster JG, Wesseling P, Reddingius RE, Gresnigt MG, et al. Differential patterns of insulin-like growth factor-I and -II mRNA expression in medulloblastoma. Neuropathol Appl Neurobiol 2004;30:503-12. https://doi.org/10.1111/j.1365-2990.2004.00571.x
  66. Russo VC, Gluckman PD, Feldman EL, Werther GA. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 2005;26:916-43. https://doi.org/10.1210/er.2004-0024
  67. Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 2007;28:20-47. https://doi.org/10.1210/er.2006-0001
  68. Zumkeller W. IGFs and IGF-binding proteins as diagnostic markers and biological modulators in brain tumors. Expert Rev Mol Diagn 2002;2:473-7. https://doi.org/10.1586/14737159.2.5.473
  69. Kao CL, Chiou SH, Ho DM, Chen YJ, Liu RS, Lo CW, et al. Elevation of plasma and cerebrospinal fluid osteopontin levels in patients with atypical teratoid/rhabdoid tumor. Am J Clin Pathol 2005;123:297-304. https://doi.org/10.1309/0FTKBKVNK4T5P1L1
  70. Buchino JJ. Atypical teratoid/rhabdoid tumor--a stereogram unveiled. Adv Anat Pathol 1999;6:97-102. https://doi.org/10.1097/00125480-199903000-00004
  71. Furger KA, Menon RK, Tuck AB, Bramwell VH, Chambers AF. The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med 2001;1:621-32. https://doi.org/10.2174/1566524013363339
  72. Hirama M, Takahashi F, Takahashi K, Akutagawa S, Shimizu K, Soma S, et al. Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Lett 2003;198:107-17. https://doi.org/10.1016/S0304-3835(03)00286-6
  73. Shijubo N, Uede T, Kon S, Nagata M, Abe S. Vascular endothelial growth factor and osteopontin in tumor biology. Crit Rev Oncog 2000;11:135-46.
  74. Varela M, Alexiou GA, Liakopoulou M, Papakonstantinou E, Pitsouni D, Alevizopoulos GA. Monoamine metabolites in ventricular CSF of children with posterior fossa tumors: correlation with tumor histology and cognitive functioning. J Neurosurg Pediatr 2014;13:375-9. https://doi.org/10.3171/2014.1.PEDS13425
  75. Scheinin M. Monoamine metabolites in human cerebrospinal fluid: indicators of neuronal activity? Med Biol 1985;63:1-17.
  76. Cengiz P, Zemlan F, Eickhoff JC, Ellenbogen R, Zimmerman JJ. Increased cerebrospinal fluid cleaved tau protein (C-tau) levels suggest axonal damage in pediatric patients with brain tumors. Childs Nerv Syst 2015;31:1313-9. https://doi.org/10.1007/s00381-015-2705-7
  77. Rajagopal MU, Hathout Y, MacDonald TJ, Kieran MW, Gururangan S, Blaney SM, et al. Proteomic profiling of cerebrospinal fluid identifies prostaglandin D2 synthase as a putative biomarker for pediatric medulloblastoma: a pediatric brain tumor consortium study. Proteomics 2011;11:935-43. https://doi.org/10.1002/pmic.201000198
  78. Yamashima T, Sakuda K, Tohma Y, Yamashita J, Oda H, Irikura D, et al. Prostaglandin D synthase (beta-trace) in human arachnoid and meningioma cells: roles as a cell marker or in cerebrospinal fluid absorption, tumorigenesis, and calcification process. J Neurosci 1997;17:2376-82. https://doi.org/10.1523/JNEUROSCI.17-07-02376.1997
  79. de Bont JM, den Boer ML, Reddingius RE, Jansen J, Passier M, van Schaik RH, et al. Identification of apolipoprotein A-II in cerebrospinal fluid of pediatric brain tumor patients by protein expression profiling. Clin Chem 2006;52:1501-9. https://doi.org/10.1373/clinchem.2006.069294
  80. Martin-Campos JM, Escola-Gil JC, Ribas V, Blanco-Vaca F. Apolipoprotein A-II, genetic variation on chromosome 1q21-q24, and disease susceptibility. Curr Opin Lipidol 2004;15:247-53. https://doi.org/10.1097/00041433-200406000-00003
  81. Tailleux A, Duriez P, Fruchart JC, Clavey V. Apolipoprotein A-II, HDL metabolism and atherosclerosis. Atherosclerosis 2002;164:1-13. https://doi.org/10.1016/S0021-9150(01)00751-1
  82. Li VW, Folkerth RD, Watanabe H, Yu C, Rupnick M, Barnes P, et al. Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet 1994;344:82-6. https://doi.org/10.1016/S0140-6736(94)91280-7
  83. Moscatelli D. High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J Cell Physiol 1987;131:123-30. https://doi.org/10.1002/jcp.1041310118
  84. Bonifacio SL, deVries LS, Groenendaal F. Impact of hypothermia on predictors of poor outcome: how do we decide to redirect care? Semin Fetal Neonatal Med 2015;20:122-7. https://doi.org/10.1016/j.siny.2014.12.011
  85. Tekgul H, Yalaz M, Kutukculer N, Ozbek S, Kose T, Akisu M, et al. Value of biochemical markers for outcome in term infants with asphyxia. Pediatr Neurol 2004;31:326-32. https://doi.org/10.1016/j.pediatrneurol.2004.05.004
  86. Ezgu FS, Atalay Y, Gucuyener K, Tunc S, Koc E, Ergenekon E, et al. Neuron-specific enolase levels and neuroimaging in asphyxiated term newborns. J Child Neurol 2002;17:824-9. https://doi.org/10.1177/08830738020170111301
  87. Garcia-Alix A, Cabanas F, Pellicer A, Hernanz A, Stiris TA, Quero J. Neuron-specific enolase and myelin basic protein: relationship of cerebrospinal fluid concentrations to the neurologic condition of asphyxiated full-term infants. Pediatrics 1994;93:234-40. https://doi.org/10.1542/peds.93.2.234
  88. Blennow M, Savman K, Ilves P, Thoresen M, Rosengren L. Brain-specific proteins in the cerebrospinal fluid of severely asphyxiated newborn infants. Acta Paediatr 2001;90:1171-5. https://doi.org/10.1080/080352501317061594
  89. Thornberg E, Thiringer K, Hagberg H, Kjellmer I. Neuron specific enolase in asphyxiated newborns: association with encephalopathy and cerebral function monitor trace. Arch Dis Child Fetal Neonatal Ed 1995;72:F39-42. https://doi.org/10.1136/fn.72.1.f39
  90. Bandyopadhyay S, Hennes H, Gorelick MH, Wells RG, Walsh-Kelly CM. Serum neuron-specific enolase as a predictor of short-term outcome in children with closed traumatic brain injury. Acad Emerg Med 2005;12:732-8. https://doi.org/10.1111/j.1553-2712.2005.tb00940.x
  91. Sun J, Li J, Cheng G, Sha B, Zhou W. Effects of hypothermia on NSE and S-100 protein levels in CSF in neonates following hypoxic/ischaemic brain damage. Acta Paediatr 2012;101:e316-20. https://doi.org/10.1111/j.1651-2227.2012.02679.x
  92. Leon-Lozano MZ, Arnaez J, Valls A, Arca G, Agut T, Alarcon A, et al. Cerebrospinal fluid levels of neuron-specific enolase predict the severity of brain damage in newborns with neonatal hypoxic-ischemic encephalopathy treated with hypothermia. PLoS One 2020;15:e0234082. https://doi.org/10.1371/journal.pone.0234082
  93. Florio P, Luisi S, Bruschettini M, Grutzfeld D, Dobrzanska A, Bruschettini P, et al. Cerebrospinal fluid activin a measurement in asphyxiated full-term newborns predicts hypoxic ischemic encephalopathy. Clin Chem 2004;50:2386-9. https://doi.org/10.1373/clinchem.2004.035774
  94. Florio P, Gazzolo D, Luisi S, Petraglia F. Activin A in brain injury. Adv Clin Chem 2007;43:117-30. https://doi.org/10.1016/S0065-2423(06)43004-3
  95. Whalen MJ, Carlos TM, Kochanek PM, Wisniewski SR, Bell MJ, Carcillo JA, et al. Soluble adhesion molecules in CSF are increased in children with severe head injury. J Neurotrauma 1998;15:777-87. https://doi.org/10.1089/neu.1998.15.777
  96. Shore PM, Thomas NJ, Clark RS, Adelson PD, Wisniewski SR, Janesko KL, et al. Continuous versus intermittent cerebrospinal fluid drainage after severe traumatic brain injury in children: effect on biochemical markers. J Neurotrauma 2004;21:1113-22. https://doi.org/10.1089/0897715041953867
  97. Shore PM, Jackson EK, Wisniewski SR, Clark RS, Adelson PD, Kochanek PM. Vascular endothelial growth factor is increased in cerebrospinal fluid after traumatic brain injury in infants and children. Neurosurgery 2004;5 4:605-11; discussion 11-2. https://doi.org/10.1227/01.NEU.0000108642.88724.DB
  98. Buttram SD, Wisniewski SR, Jackson EK, Adelson PD, Feldman K, Bayir H, et al. Multiplex assessment of cytokine and chemokine levels in cerebrospinal fluid following severe pediatric traumatic brain injury: effects of moderate hypothermia. J Neurotrauma 2007;24:1707-17. https://doi.org/10.1089/neu.2007.0349
  99. Chiaretti A, Barone G, Riccardi R, Antonelli A, Pezzotti P, Genovese O, et al. NGF, DCX, and NSE upregulation correlates with severity and outcome of head trauma in children. Neurology 2009;72:609-16. https://doi.org/10.1212/01.wnl.0000342462.51073.06
  100. Hicks SD, Johnson J, Carney MC, Bramley H, Olympia RP, Loeffert AC, et al. Overlapping microRNA expression in saliva and cerebrospinal fluid accurately identifies pediatric traumatic brain injury. J Neurotrauma 2018;35:64-72. https://doi.org/10.1089/neu.2017.5111
  101. Fejes Z, Erdei J, Pocsi M, Takai J, Jeney V, Nagy A, et al. Elevated proinflammatory cell-free MicroRNA levels in cerebrospinal fluid of premature infants after intraventricular hemorrhage. Int J Mol Sci 2020;21:6870. https://doi.org/10.3390/ijms21186870
  102. Limbrick DD Jr, Baksh B, Morgan CD, Habiyaremye G, McAllister JP 2nd, Inder TE, et al. Cerebrospinal fluid biomarkers of infantile congenital hydrocephalus. PLoS One 2017;12:e0172353. https://doi.org/10.1371/journal.pone.0172353
  103. Yuan W, McKinstry RC, Shimony JS, Altaye M, Powell SK, Phillips JM, et al. Diffusion tensor imaging properties and neurobehavioral outcomes in children with hydrocephalus. AJNR Am J Neuroradiol 2013;34:439-45. https://doi.org/10.3174/ajnr.A3218
  104. Dawkins E, Small DH. Insights into the physiological function of the beta-amyloid precursor protein: beyond Alzheimer's disease. J Neurochem 2014;129:756-69. https://doi.org/10.1111/jnc.12675