과제정보
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1A5A1032433) and the Chinese Government Scholarship of China Scholarship Council (CSC) (No. 202006450022).
참고문헌
- BS EN 10025-2:2019 (2019), Hot Rolled Products of Structural Steels-Part 2: Technical Delivery Conditions for Non-Alloy Structural Steels, British Standards Institution, BSI, UK. https://www.modiranahan.com/uploads/pdf/BS_EN_10025_2_2019.pdf
- Dalhoff, P., Argyriadis, K. and Klose, M. (2007), "Integrated load and strength analysis for offshore wind turbines with jacket structures", Proceedings of European Offshore Wind Energy Conference and Exhibition, Berlin, Germany https://onepetro.org/ISOPEIOPEC/proceedingsabstract/ISOPE07/All-ISOPE07/ISOPE-I-07-541/10592
- DNV-OS-J101 (2014), Design of Offshore Wind Turbine Structures. DNV Standard, Det Norske Veritas, DNV. https://rules.dnv.com/docs/pdf/dnvpm/codes/docs/2014-05/OsJ101.pdf
- DNV-RP-C203 (2010), Fatigue Design of Offshore Steel Structures. DNV Standards, Det Norske Veritas, DNV. https://www.doc88.com/p-7788646052639.html
- DNVGL-CG-0129 (2015), Fatigue Assessment of Ship Structures. DNV Standards, Det Norske Veritas, DNV. https://rules.dnv.com/docs/pdf/DNV/CG/2015-10/DNVGL-CG0129.pdf
- DNVGL-ST-0126 (2018), Support Structures for Wind Turbines. DNV Standards, Det Norske Veritas, DNV. https://rules.dnv.com/docs/pdf/DNV/ST/2018-07/DNVGL-ST0126.pdf
- DNVGL-ST-0437 (2016), Loads and Site Conditions for Wind Turbines. DNV Standards, Det Norske Veritas, DNV. https://rules.dnv.com/docs/pdf/DNV/ST/2016-11/DNVGL-ST0437.pdf
- Farhan, M., Mohammadi, M.R.S., Correia, J.A. and Rebelo, C. (2018), "Transition piece design for an onshore hybrid wind turbine with multiaxial fatigue life estimation", Wind Eng., 42(4), 286-303. https://doi.org/10.1177/0309524X18777322.
- Fischer, T., Vries, W.D., Rainey, P., Schmidt, B., Argyriadis, K., and Kuhn, M. (2012), "Offshore support structure optimization by means of integrated design and controls", Wind Energy, 15(1), 99-117. https://doi.org/10.1002/we.521.
- Gentils, T., Lin, W. and Kolios, A. (2017), "Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm", Appl. Energy, 199, 187-204. https://doi.org/10.1016/j.apenergy.2017.05.009.
- Guo, X.H. and Wu, Z.A. (2020), "Numerical analysis of jacket transition section", China Offshore Platform, 35(6), 8. http://qikan.cqvip.com/Qikan/Article/Detail?id=7103595828.
- Han, C.S., Liu, K., Ma, Y.L., Qin, P.J. and Zou, T. (2021), "Multiaxial fatigue assessment of jacket-supported offshore wind turbines considering multiple random correlated loads", Renew. Energy, 169, 1252-1264 https://doi.org/10.1016/j.renene.2021.01.093.
- Huang, H., An, H., Ma, H. and Chen, S. (2018), "An engineering method for complex structural optimization involving both size and topology design variables", Int. J. Numer. Methods Eng., 117, 291-315. https://doi.org/10.1002/nme.5957.
- IEC-61400-3-1 (2019), Wind Energy Generation Systems-Part 3-1: Design Requirements for Fixed Offshore Wind Turbines. International Electrotechnical Commission, IEC. https://webstore.iec.ch/publication/29360.
- Jalbi, S. and Bhattacharya, S. (2020), "Concept design of jacket foundations for offshore wind turbines in 10 steps", Soil Dyn. Earthq. Eng., 139, 106357. https://doi.org/10.1016/j.soildyn.2020.106357.
- Jonkman, J.M., Butterfield, S., Musial, W. and Scott, G. (2009), Definition of a 5mw Reference Wind Turbine for Offshore System Development, NREL/TP-500-38060. Golden, CO: NREL. https://doi.org/10.2172/947422.
- Kim, J.Y., Oh, K.Y., Kang, K.S. and Lee, J.S. (2013), "Site selection of offshore wind farms around the Korean Peninsula through economic evaluation", Renew. Energy, 54, 189-195. https://doi.org/10.1016/j.renene.2012.08.026.
- Lee, J.H., Kim, S.Y., Kim, M.H., Shin, S.C. and Lee, Y.S. (2014), "Design optimization and reliability analysis of jacket support structure for 5-MW offshore wind turbine", J. Ocean Eng. Technol., 28(3), 218-226. https://doi.org/10.5574/KSOE.2014.28.3.218.
- Lee, Y.S., Choi, B.L., Lee, J.H., Kim, S.Y. and Han, S. (2014), "Reliability-based design optimization of monopile transition piece for offshore wind turbine system", Renew. Energy, 71(11), 729-741. https://doi.org/10.1016/j.renene.2014.06.017.
- Lee, Y.S., Gonzalez, J.A., Lee, J.H., Kim, Y.I., Park, K.C. and Han, S. (2016), "Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation", Renew. Energy, 85, 1214-1225. https://doi.org/10.1016/j.renene.2015.07.052.
- Lin, L. (2014), The Finite Element Analysis and Structural Optimization Design for Wind Turbine Foundation, Master Thesis, Tianjin University, Tianjin, Chain. http://cdmd.cnki.com.cn/article/cdmd-10217-1017243119.htm.
- Pan, Z.X., Wu, G.Y., Zhao, S.X. and He, Z. (2019), "Topology optimization method for transition pieces of offshore jacket wind turbine foundations", China Offshore Platform, 30(4), 6-13. https://doi.org/10.1016/j.renene.2015.07.052.
- Plodpradit, P., Dinh, V.N. and Kim, K.D. (2019), "Tripod-supported offshore wind turbines: modal and coupled analysis and a parametric study using X-SEA and FAST", J. Mar. Sci. Eng., 7(6), 181. https://doi.org/10.3390/jmse7060181.
- Schaffer, W., Seo, J., Choi, E. and Lee, J. (2020), "Optimized retrofit design of in-service monopile foundation offshore wind turbine transition zone", Eng. Struct., 220, 111001. https://doi.org/10.1016/j.engstruct.2020.111001.
- Seidel, M. (2007), "Jacket substructures for the REpower 5M wind turbine", Proceedings of the European Offshore Wind Energy Conference, Berlin, Germany. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.452.9225&rep=rep1&type=pdf.
- Tian, M.J. (2013), A Study on Fatigue Analysis Method of Support Structures for Offshore Wind Turbines, Master Thesis, Dalian University of Technology, Dalian, China. http://cdmd.cnki.com.cn/Article/CDMD-101411013201714.htm.
- Tian, X.Y., Li, X.D., Liu, G.J., Xie, Y.C. and Len, D.X. (2019), "Research on optimal design of jacketed offshore wind turbine support structure", 19th China Ocean (Shore) Engineering Symposium, Chongqing, China, 238-242. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CPFD&filename=HYGC201910001035.
- Vuong, N.V. and Quan, M.H. (2019), "Fatigue analysis of jacket support structure for offshore wind turbines", STCE, 13(1), 46-59. https://doi.org/10.31814/stce.nuce2019-13(1)-05.
- Wei, S., Park, H., Han, J., Na, S. and Kim, C. (2013), "A study on the effect of different modeling parameters on the dynamic response of a jacket-type offshore wind turbine in the Korean southwest sea", Renew. Energy, 58, 50-59. https://doi.org/10.1016/j.renene.2013.03.010.
- Wu, X.N., Hu, Y., Li, Y., Yang, J., Duan, L. and Wang, T.G. (2019), "Foundations of offshore wind turbines: A review", Renew. Sust. Energ. Rev., 104, 379-393. https://doi.org/10.1016/j.rser.2019.01.012.
- Ye, Y.P., Gu, S.T., Liu, M. and Feng, Z.Q. (2021), "Optimization software development for offshore turbine transition structures based on LiToSim", Appl. Math. Mech., 42(5), 11. https://doi.org/10.21656/1000-0887.410354.
- Young, W.C. and Budynas R.G. (2003), Roark's Formulas for Stress and Strain, McGraw-Hill. http://materiales.azc.uam.mx/gjl/Clases/MA10_I/Roark's%20formulas%20for%20stress%20and%20strain.pdf.