DOI QR코드

DOI QR Code

An experimental and numerical investigation on fatigue of composite and metal aircraft structures

  • Pitta, Siddharth (Department of Physics, Division of Aerospace Engineering, Universitat Politecnica de Catalunya) ;
  • Rojas, Jose I. (Department of Physics, Division of Aerospace Engineering, Universitat Politecnica de Catalunya) ;
  • Roure, Francesc (Department of Strength of Materials and Structural Engineering, Universitat Politecnica de Catalunya) ;
  • Crespo, Daniel (Department of Physics and Barcelona Research Centre in Multiscale Science and Technology) ;
  • Wahab, Magd Abdel (Faculty of Mechanical, Electrical and Computer Engineering, School of Engineering and Technology, Van Lang University)
  • 투고 : 2021.02.10
  • 심사 : 2022.03.17
  • 발행 : 2022.04.10

초록

The static strength and fatigue crack resistance of the aircraft skin structures depend on the materials used and joint type. Most of the commercial aircraft's skin panel structures are made from aluminium alloy and carbon fibre reinforced epoxy. In this study, the fatigue resistance of four joint configurations (metal/metal, metal/composite, composite/composite and composite/metal) with riveted, adhesive bonded, and hybrid joining techniques are investigated with experiments and finite element analysis. The fatigue tests were tension-tension because of the typical nature of the loads on aircraft skin panels susceptible of experimenting fatigue. Experiment results suggest that the fatigue life of hybrid joints is superior to adhesive bonded joints, and these in turn much better than conventional riveted joints. Thanks to the fact that, for hybrid joints, the adhesive bond provides better load distribution and ensures load-carrying capacity in the event of premature adhesive failure while rivets induce compressive residual stresses in the joint. Results from FE tool ABAQUS analysis for adhesive bonded and hybrid joints agrees with the experiments. From the analysis, the energy release rate for adhesive bonded joints is higher than that of hybrid joints in both opening (mode I) and shear direction (mode II). Most joints show higher energy release rate in mode II. This indicates that the joints experience fatigue crack in the shear direction, which is responsible for crack opening.

키워드

과제정보

The authors acknowledge the support of Francesc Joaquim Garcia, lab technician of the Materials Strength Laboratory at Universitat Politecnica de Catalunya, and Dr. Randal Clark, from Mavi Innovations Inc., Canada. This work was funded and supported by the Spanish Ministry MINECO [FIS2017-82625-P], Generalitat de Catalunya AGAUR [2017 SGR 42 and 2019FI_B200097], and the Research Foundation Flanders, Belgium Ministry [FWO G018916N]. The authors wish to express their gratitude to Van Lang University, Vietnam for financial support for this research.

참고문헌

  1. Abdel Wahab, M. (2012), "Fatigue in adhesively bonded joints: A review", Scholary Res. Notice, 2012, 746308. https://doi.org/10.5402/2012/746308.
  2. Adams, R.D. (2005), Adhesive Bonding: Science, Technology and Applications, Woodhead Publishing Limited, Cambridge, United Kingdom.
  3. Ajaei, B.B. and Soyoz, S. (2020). "Analytical and experimental fatigue analysis of wind turbine tower connection bolts", Wind Struct., 31(1), 1-14. https://doi.org/10.12989/was.2020.31.1.1.
  4. Ankersen, J. and Davies, G.A.O. (2009), "Interface elements-advantages and limitations in CFRP delamination modelling", 17th International Conference on Composite Materials, Edinburgh, July.
  5. Ashcroft, I.A. and Crocombe, A.D. (2008), Modelling Fatigue in Adhesively Bonded Joints, In: Modeling of Adhesively Bonded Joints, 183-223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79056-3_7.
  6. Azzeddine, N., Benkheira, A., Fekih, S. M. and Belhouari, M. (2020), "Numerical study of bonded composite patch repair in damaged laminate composites", Adv. Aircraft Spacecraft Sci., 7(2), 151-168. http://dx.doi.org/10.12989/aas.2020.7.2.151.
  7. Bernasconi, A., Jamil, A., Moroni, F. and Pirondi, A. (2013), "A study on fatigue crack propagation in thick composite adhesively bonded joints", J. Fatigue, 50, 18-25. https://doi.org/10.1016/j.ijfatigue.2012.05.018.
  8. Beylergil, B., Tanoglu, M. and Aktas, E. (2019), "Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils", Steel Compos. Struct., 31(2), 113-123. http://dx.doi.org/10.12989/scs.2019.31.2.113.
  9. Cai, Y. and Young, B. (2018). "Bearing resistance design of stainless steel bolted connections at ambient and elevated temperatures", Steel Compos. Struct., 29(2), 273-286. http://dx.doi.org/10.12989/scs.2018.29.2.273.
  10. Campbell, F. (2004), Fibres and Reinforcements: The String That Provides the Strength, Manufacturing Processes for Advanced Composites, Elsevier, Oxford, United Kingdom.
  11. Campilho, R.D., Moura, D., Banea, M.D. and da Silva, L.F.M. (2015), "Adhesive thickness effects of a ductile adhesive by optical measurement techniques", J. Adhesion Adhesives, 57, 125-132. https://doi.org/10.1016/j.ijadhadh.2014.12.004.
  12. Carrere, N., Martin, E. and Leguillon, D. (2015), "Comparison between models based on a coupled criterion for the prediction of the failure of adhesively bonded joints", Eng. Fracture Mech., 138, 185-201. https://doi.org/10.1016/j.engfracmech.2015.03.004.
  13. Chen, Q., Guo, H., Avery, K., Kang, H. and Su, X. (2018), "Mixed-mode fatigue crack growth and life prediction of an automotive adhesive bonding system", Eng. Fracture Mech., 189, 439-450. https://doi.org/10.1016/j.engfracmech.2017.11.004.
  14. Cheng, X., Zhang, J., Zhang, J., Liu, P., Cheng, Y. and Xu, Y. (2018), "Numerical analysis on tensile properties of composite hybrid bonded/bolted joints with flanging", Steel Compos. Struct., 26(3), 265-272. http://dx.doi.org/10.12989/scs.2018.26.3.265.
  15. Chowdhury, N.M., Wang, J., Chiu, W.K. and Chang, P. (2016), "Static and fatigue testing bolted, bonded and hybrid step lap joints of thick carbon fibre/epoxy laminates used on aircraft structures", Compos. Struct., 142, 96-106. https://doi.org/10.1016/j.compstruct.2016.01.078.
  16. AC 20-107B (2010), Composite Aircraft Structure, US Department of Transportation, Federal Aviation Administration; USA.
  17. Collings, T.A. (1977), "The strength of bolted joints in multi-directional CFRP laminates", Composites, 8(1), 43-55. https://doi.org/10.1016/0010-4361(77)90027-1.
  18. Da Silva, L.F., Rodrigues, T., Figueiredo, M., De Moura, M. and Chousal, J. (2006), "Effect of adhesive type and thickness on the lap shear strength", J. Adhesion, 82(11), 1091-1115. https://doi.org/10.1080/0218460600948511.
  19. Donough, M., Gunnion, A., Orifici, A. and Wang, C. (2015), "Plasticity induced crack closure in adhesively bonded joints under fatigue loading", J. Fatigue, 70, 440-450. https://doi.org/10.1016/j.ijfatigue.2014.07.003.
  20. Ezzine, M., Madani, K., Tarfaoui, M., Touzain, S. and Mallarino, S. (2019), "Comparative study of the resistance of bonded, riveted and hybrid assemblies; experimental and numerical analyses", Struct. Eng. Mech., 70(4), 467-477. http://dx.doi.org/10.12989/sem.2019.70.4.467.
  21. 25.571-1D (2011) Damage tolerance and fatigue evaluation of structure, Federal Aviation Administration; Washington, DC, USA.
  22. Grant, L., Adams, R.D. and da Silva, L.F. (2009), "Experimental and numerical analysis of single-lap joints for the automotive industry", J. Adhesion Adhesives, 29(4), 405-413. https://doi.org/10.1016/j.ijadhadh.2008.09.001.
  23. Huilong, R., Xiaoying, Z. and Timon, R. (2017), "Dual-horizon peridynamics: A stable solution to varying horizons", Computer Methods Appl. Mech. Eng., 318, 762-782. https://doi.org/10.1016/j.cma.2016.12.013.
  24. Ireman, T., Nyman, T. and Hellbom, K. (1993), "On design methods for bolted joints in composite aircraft structures", Compos. Struct., 25(1-4), 567-578. https://doi.org/10.1016/0263-8223(93)90205-5.
  25. Jadee, K.J. and Othman, A. (2011), "Fiber reinforced composite structure with bolted joint-a review", in: Key Engineering Materials, 471, 939-944. https://doi.org/10.4028/www.scientific.net/KEM.471-472.939.
  26. Jen, Y.M. and Ko, C.W. (2010), "Evaluation of fatigue life of adhesively bonded aluminum single-lap joints using interfacial parameters", J. Fatigue, 32(2), 330-340. https://doi.org/10.1016/j.ijfatigue.2009.07.001.
  27. Kahraman, R., Sunar, M. and Yilbas, B. (2008) "Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive", J. Mater. Process. Technol., 205(1-3), 183-189. https://doi.org/10.1016/j.jmatprotec.2007.11.121.
  28. Kelly, G. (2006), "Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints", Compos. Struct., 72(1), 119-129. https://doi.org/10.1016/j.compstruct.2004.11.002.
  29. Krueger, R. (2004), "Virtual crack closure technique: History, approach, and applications", Appl. Mech. Rev., 57(2), 109-143. https://doi.org/10.1115/1.1595677.
  30. Kweon, J.H., Jung, J.W., Kim, T.H., Choi, J.H. and Kim, D.H. (2006), "Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding", Compos. Struct., 75(1-4), 192-198. https://doi.org/10.1016/j.compstruct.2006.04.013.
  31. Leena, K., Athira, K., Bhuvaneswari, S., Suraj, S. and Rao, V.L. (2016), "Effect of surface pre-treatment on surface characteristics and adhesive bond strength of aluminium alloy", J. Adhesion Adhesives, 70, 265-270. https://doi.org/10.1016/j.ijadhadh.2016.07.012.
  32. Matsuzaki, R., Shibata, M. and Todoroki, A. (2008), "Improving performance of GFRP/aluminum single lap joints using bolted/co-cured hybrid method", Compos Part A: Appl. Sci. Manufact., 39(2), 154-163. https://doi.org/10.1016/j.compositesa.2007.11.009.
  33. Meran, A.P. and Samanci, A. (2017), "Analysis of various composite patches effect on mechanical properties of notched al-mg plate", Steel Compos. Struct., 25(6), 685-692. https://dx.doi.org/10.12989/scs.2017.25.6.685.
  34. Mishra, P., Pradhan, A., Pandit, M., Panda, S. (2020), "Thermoelastic effect on inter-laminar embedded de-lamination characteristics in spar wingskin joints made with laminated FRP composites", Steel Compos. Struct., 35(3), 439-447. https://dx.doi.org/10.12989/scs.2020.35.3.439.
  35. Mohammed, A.M., Cuong, N.H., Zi, G., Areias, P., Zhuang, X and Timon, R. (2018), "Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model", Eng. Fracture Mech., 188, 287-299. https://doi.org/10.1016/j.engfracmech.2017.08.002.
  36. Mollenhauer, D.H., Fredrickson, B., Schoeppner, G., Iarve, E.V. and Palazotto, A. (2007), "Analysis and measurement of scarf-lap and step-lap joint repair in composite laminates", Proceedings of the 16th International Conference on Composite Materials, Vol 2, Kyoto, July.
  37. Moradi, A., Carrere, N., Leguillon, D., Martin, E. and Cognard, J.Y. (2013), "Strength prediction of bonded assemblies using a coupled criterion under elastic assumptions: effect of material and geometrical parameters", J. Adhesion Adhesives, 47, 73-82. https://doi.org/10.1016/j.ijadhadh.2013.09.044.
  38. Paroissien, E., Sartor, M., Huet, J. and Lachaud, F. (2007), "Analytical two-dimensional model of a hybrid (bolted/bonded) single-lap joint", J. Aircraft, 44(2), 573-582. https://doi.org/10.2514/1.24452.
  39. Pitta, S., de la Mora Carles, V., Roure, F., Crespo, D. and Rojas, J.I. (2018), "On the static strength of aluminium and carbon fibre aircraft lap joint repairs", Compos. Struct., 201, 276-290. https://doi.org/10.1016/j.compstruct.2018.06.002.
  40. Pitta, S., Rojas, J.I and Crespo, D. (2020), Comparison of the response of different configurations of aircraft repair patches under static and dynamic loading, Ph.D. Dissertation, Universitat Politecnica de Catalunya, Barcelona, Spain. http://hdl.handle.net/2117/32818.
  41. Pitta, S., Roure, F., Crespo, D. and Rojas, J.I. (2019), "An experimental and numerical study of repairs on composite substrates with composite and aluminum doublers using riveted, bonded, and hybrid joints", Materials, 12(18), 2978. https://doi.org/10.3390/ma12182978.
  42. Quaresimin, M. and Ricotta, M. (2006), "Life prediction of bonded joints in composite materials", J. Fatigue, 28(10), 1166-1176. https://doi.org/10.1016/j.ijfatigue.2006.02.005.
  43. Rabczuk, R. and Belytschko, T. (2004), "Cracking particles: a simplified meshfree method for arbitrary evolving cracks", J. Numberical Methods Eng., 61, 2316-2343. https://doi.org/10.1002/nme.1151.
  44. Sachse, R., Pickett, A., Essig, W. and Middendorf, P. (2017), "Experimental and numerical investigation of the influence of rivetless nut plate joints on fatigue crack growth in adhesively bonded composite joints", J. Fatigue, 105, 262-275. https://doi.org/10.1016/j.ijfatigue.2017.08.001.
  45. Sadowski, T., Golewski, P. and Zarzeka-Raczkowska, E. (2011), "Damage and failure processes of hybrid joints: adhesive bonded aluminium plates reinforced by rivets", Comput. Mater. Sci., 50(4), 1256-1262. https://doi.org/10.1016/j.commatsci.2010.06.022.
  46. Soykok, I.F. (2015), "End geometry and pin-hole effects on axially loaded adhesively bonded composite joints", Compos. Part B. Eng., 77, 129-138. https://doi.org/10.1016/j.compositesb.2015.03.031.
  47. Sun, C., Bhawesh, K., Wang, P. and Sterkenburg, R. (2005), "Development of improved hybrid joints for composite structure", Compos. Struct., 35, 1-20. https://doi.org/10.1016/0263-8223(96)00018-9
  48. Taib, A.A., Boukhili, R., Achiou, S., Gordon, S. and Boukehili, H. (2006), "Bonded joints with composite adherends. part I. effect of specimen configuration, adhesive thickness, spew fillet and adherend stiffness on fracture", J. Adhesion Adhesives, 26(4), 226-236. https://doi.org/10.1016/j.ijadhadh.2005.03.015.
  49. Talebi, H., Silani, M., Bordas, S.P.A., Kerfriden, P. and Rabczuk, T. (2014), "A computational library for multiscale modeling of material failure", Comput. Mech., 53, 1047-1071. https://doi.org/10.1007/s00466-013-0948-2.
  50. Van Blaricum, T., Bates, P. and Jones, R. (1989), "An experimental investigation into the effect of impact damage on the compressive strength of step lap joints", Eng. Fracture Mech., 32(5), 667-674. https://doi.org/10.1016/0013-7944(89)90165-3.
  51. Waghmare, A.K. and Sahoo, P. (2015), "Adhesive friction at the contact between rough surfaces using n-point asperity model", Eng. Sci. Technol., 18(3), 463-474. https://doi.org/10.1016/j.jestch.2015.03.006.
  52. Xu, W., Yu, H. and Tao, C. (2015) "Damage and stress evolution in the bondlines of metallic adhesively bonded joints accompanied by bondline thickness effect", J. Adhesion Adhesives, 59, 86-97. https://doi.org/10.1016/j.ijadhadh.2015.02.007.