DOI QR코드

DOI QR Code

Rotational and fractional effect on Rayleigh waves in an orthotropic magneto-thermoelastic media with hall current

  • Lata, Parveen (Department of Basic and Applied Sciences, Punjabi University) ;
  • Himanshi, Himanshi (Department of Basic and Applied Sciences, Punjabi University)
  • Received : 2021.05.24
  • Accepted : 2022.03.06
  • Published : 2022.03.25

Abstract

The present research is concerned to study the effect of fractional parameter and rotation on the propagation of Rayleigh waves in an orthotropic magneto-thermoelastic media with three-phase-lags in the context of fractional order theory of generalized thermoelasticity with combined effect of rotation and hall current. The secular equations of Rayleigh waves are derived by using the appropriate boundary conditions. The wave properties such as phase velocity, attenuation coefficient are computed numerically and the numerical simulated results are presented through graphs to show the effect on all the components. Some special cases are also discussed in the present investigation.

Keywords

References

  1. Abbas I.A. (2015), "Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity", Appl. Mathem. Modelling, 39(20), 6196-6206. https://doi.org/ 10.1016/j.apm.2015.01.065.
  2. Abbas, I.A. (2011), "A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation", Sadhana, 36(3), 411-423. http://doi.org/10.1007/s12046-011-0025-5.
  3. Abbas, I.A. and Kumar, R. (2014), "Deformation due to thermal source in micropolar generalized thermoelastic half-space by finite element method", J. Comput. Theoretic. Nanosci., 11(1), 185-190. http://doi.org/10.1166/jctn.2014.3335.
  4. Abbas, I.A. and Kumar, R. (2014), "Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element method", J. Vib. Control, 20(12), 1907-1919. https://doi.org/10.1177/1077546313480541
  5. Abbas, I.A. and Marin, M. (2017), "Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating", Physica E: Low-Dimens. Syst. Nanostruct., 87, 254-260. http://doi.org/10.2016/j.physe.2016.10.048.
  6. Abbas, I.A. and Zenkour, A.M. (2014), "The effect of rotation and initial stress on thermal shock problem for a fiber-reinforced anisotropic half-space using Green-Naghdi theory", J. Comput. Theoretic. Nanosci., 11(2), 331-338. https://doi.org/10.1166/jctn.2014.3356
  7. Abbas, I.A., Alzahrani, F.S. and Elaiw, A. (2018), "A DPL model of photothermal interaction in a semiconductor material", Waves Random Complex Media, 29(2), 328-343. https://doi.org/10.1080/17455030.2018.1433901.
  8. Abd-Alla, A.M., Abo-Dahab, S.M. and Al-Thamali, T.A. (2012), "Propagation of Rayleigh waves in a rotating orthotropic material elastic half-space under initial stress and gravity", J. Mech. Sci. Technol., 26(9), 2815-2823. http://doi.org/10.1007/s12206-012-07336-5.
  9. Abd-Alla, A.M., Abo-Dahab, S.M. and Khan, A. (2017), "Rotational effect on thermoelastic Stoneley, Love and Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media of higher order", Struct. Eng. Mech., 61(2), 221-230.http://doi.org/10.12989/sem.2017.61.2.221
  10. Abo-Dahab, S.M. and Abbas, I.A. (2011), "LS model on thermal shock problem of generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", Appl. Mathem. Modelling, 35(8), 3759-3768. http://doi.org/10.1016/j.apm.2011.02.028.
  11. Abouelregal, A.E., Elhagary, M.A., Soleiman, A. and Khalil, K.M. (2020), "Generalized thermoelastic-diffusion model with higher-order fractional time derivatives and four-phase-lags", Mech. Based Des. Struct. Machines, 1-18. http://doi.org/10.1080/15397734.2020.1730189.
  12. Ahmed, S.M. and Abo-Dahab, S.M. (2012), "Influence of initial stress and gravity field on propagation of Rayleigh and Stoneley waves in a thermoelastic Orthotropic granular medium", Mathem. Prob. Eng., 1-23. https://doi.org/10.1155/2012/245965.
  13. Allam, O., Draiche, K., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Mahmoud, S.R., Adda Bedia, E.A. and Tounsi, A. (2020), "A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells", Comput. Concrete, 26(2), 185-201. http://doi.org/10.12989/cac.2020.26.2.185.
  14. Bakoura, A., Bourada, F., Bousahla, A., Tounsi, A., Benrahou, K. H., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method", Comput. Concrete, 27(1), 73-83. http://doi.org/10/12989/cac.2021.27.1.0733. https://doi.org/10.12989/CAC.2021.27.1.073
  15. Biswas, S. and Abo-Dahab, S.M. (2018), "Effect of phase lags on Rayleigh wave propagation in initially stressed magneto-thermoelastic orthotropic medium", Appl. Mathem. Modelling, 59, 713-727. https://doi.org/10.1016/j.apm.2018.02.025.
  16. Biswas, S. and Mukhopadhyay, B. (2018), "Eigen function expansion method to characterize Rayleigh wave propagation in orthotropic medium with phase lags", Waves Random Complex Media. http://doi.org/ 10.1080/17455030.2018.1470355.
  17. Chadwick, P. and Windle, D.W. (1964), "Propagation of Rayleigh waves along isothermal and insulated boundaries", Proceeding of the Royal Society of London, 280, 47-71.
  18. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin\'s approach", Geomech. Eng., 21(5), 471-487. http://doi.org/10.12989/gae.2020.21.5.471.
  19. Das, P. and Kanoria, M. (2014), "Study of finite thermal waves in a magnetothermoelastic rotating medium", J. Thermal Stress, 37(4), 405-428 https://doi.org/10.1080/01495739.2013.870847
  20. Deswal, S. and Kalkal, K.K. (2014), "Plane waves in a fractional order micropolar magneto-thermoelastic half-space", Wave Motion, 51(1), 100-113. http://doi.org/10.1016/j.wavemoti.2013.06.009.
  21. EL-Naggar, A.M., Kishka, Z., Abd-Alla, A. and Abbas, I.A. (2013), "On the initial stress, magnetic field, voids and rotation effects on plane waves in generalized Thermoelasticity", J. Computat. Theoretic. Nanosci., 10(6), 1408-1417. http://doi.org/10.1166/jctn.2013.2862.
  22. Ezzat, M.A. (2020), "Fractional thermo-viscoelastic response of biological tissue with variable thermal material properties", J. Thermal Stresses, 43(9), 1120-1137. http://doi.org/10.1080/01495739.2020.1770643.
  23. Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S.R. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. http://doi.org/10.12989/scs.2021.39.1.051.
  24. Hobiny, A.D. and Abbas, I.A. (2017), "A study on photothermal waves in an unbounded semiconductor medium with cylindrical cavity", Mech. Time-Dependent Mater., 21(1), 61-72 https://doi.org/10.1007/s11043-016-9318-8
  25. Hobiny, A.D. and Abbas, I.A. (2018), "Analytical solutions of photo-thermo-elastic waves in a non-homogenous semiconducting material", Result. Phys., 10, 385-390. https://doi.org/10.1016/j.rinp.2018.06.035
  26. Hobiny, A.D. and Abbas, I.A. (2018), "Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source", Int. J. Heat Mass Transfer, 124, 1011-1014. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.018.
  27. Horrigue, S. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimensional fiber-reinforced anisotropic material", Mathematics, 8(9), 1609. http://doi.org/10.3390/math8091609.
  28. Khan, A.A., Bukhari, S.R., Marin, M. and Ellahi, R. (2019), "Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index", Heat Transfer Research, 50(11), 1061-1080. http://doi.org/10.1615/HeatTransRes.2018028397.
  29. Kumar, R. and Chawla, V. (2014), "General solution and fundamental solution for two-dimensional problem in orthotropic thermoelastic media with voids", Theoretic. Appl. Mech., 41(4), 247-265. http://doi.org/ 10.2298/TAM1404247.
  30. Kumar, R., Gupta, V. and Abbas, I.A. (2013), "Plane deformation due to thermal source in fractional order thermoelastic media", J. Comput. Theoretic. Nanosci., 10(10), 2520-2525. https://doi.org/10.1166/jctn.2013.3241
  31. Kumar, R., Sharma, N., Lata, P. and Abo-Dahab, S.M. (2017), "Rayleigh waves in anisotropic magnetothermoelastic medium", Coup. Syst. Mech., 6(3), 317-333. http://doi.org/10.12989/csm.2017.6.3.317.
  32. Lata, P. (2021), "Orthotropic magneto-thermoelastic solid with higher order dual-phase-lag model in frequency domain", Struct. Eng. Mech., 77(3), 315-327. http://doi.org/10.12989/sem.2021.77.3.315.
  33. Lata, P. (2021), "Stoneley wave propagation in an orthotropic thermoelastic media with fractional order theory", Compos. Mater. Eng., 3(1), 57-70. http://doi.org/10.12989/cme.2021.3.1.057.
  34. Lata, P. and Kaur, H. (2021), "Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer", Steel Compos. Struct., 38(2), 213-221150. http://doi.org/10.12989/scs.2021.38.2.213.
  35. Lata, P. and Singh, S. (2021), "Stoneley wave propagation in non-local isotropic magneto-thermoelastic solid with multi-dualphase-lag heat transfer", Steel Compos. Struct., 38(2), 141-150. http://doi.org/10.12989/scs.2021.38.2.141.
  36. Mahmoud, S.R. (2014), "Effect of Non-Homogenity, Magnetic Field and Gravity Field on Rayleigh Waves in an Initially Stressed Elastic Half-Space of Orthotropic Material Subject to Rotation", J. Comput. Theoretic. Nanosci., 11(7), 1627-1634. http://doi.org/10.1166/jctn.2014.3542.
  37. Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Mathematic. Phys., 40(3), 1391-1399. http://doi.org/10.1063/1.532809.
  38. Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micropolar bodies", AIP Adv., 5(3), http://doi.org/10.1063/1.4914912.
  39. Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2020), "A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions", Steel Compos. Struct., 36(3), 355-367. http://doi.org/10.12989/scs.2020.36.3.355.
  40. Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2021), "Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations", Steel Compos. Struct., 39(5), 631-643. http://doi.org/10.12989/scs.2021.39.5.631.
  41. Oldham, K.B. and Spainer, J. (1974), The Fractional Calculus, Academic Press. New York, London.
  42. Othman, M.I.A., Said, S. and Marin, M. (2019), "A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase-lag model", Int. J. Numer. Meth. Heat Fluid Flow, 29(12), 4788-4806. http://doi.org/10.1108/HFF-04-2019-0359.
  43. Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput. Concrete, 25(3), 225-244.http://doi.org/10.12989/cac.2020.25.3.225.
  44. Rayleigh (1885), "On waves propagated along the plane surface of an elastic solid", Proceeding of the London Mathematical Society, s1-17(1), 4-11. http://doi.org/10.1112/plms/s1-17.1.4.
  45. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. http://doi.org/10.12989/cac.2020.25.4.311.
  46. Saeed, T., Abbas, I.A. and Marin, M. (2020), "A GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3), http://doi.org/10.3390/sym12030488.
  47. Shahsavari, D. Karami, B. and Li, L. (2018), "A higher-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., 29(1), 053-66. http://doi.org/10.12989/scs.2018.29.1.053.
  48. Shaw, S. and Othman, M.I.A. (2019), "Characteristics of Rayleigh wave propagation in orthotropic magneto-thermoelastic half-space: An Eigen function expansion method", Appl. Mathem. Modelling, 67(47), 605-620. http://doi.org/10.1016/j.apm.2018.11.019.
  49. Singh, B. and Verma, S. (2019), "On propagation of Rayleigh type surface wave in five different theories of thermoelasticity", Int. J. Appl. Mech. Eng., 24(3), 661-673. http://doi.org/10.2478/ijame-2019-0041.
  50. Singh, B., Kumari, S. and Singh, J. (2014), "Propagation of the Rayleigh wave in an initially stressed transversely isotropic dual phase lag magnetothermoelastic half space", J. Eng. Phys. Thermophy., 87(6), 1539-1547. https://doi.org/10.1007/s10891-014-1160-8.
  51. Tahir, S.I., Chikh, A., Tounsi, A., AL-Osta, M.A., Al-Dulaijan, S. U. and Alzahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269. https://doi.org/10.1016/j.compstruct.2021.114030.
  52. Xiong, Q. and Tian, X. (2017), "Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock", Steel Compos. Struct., 25(2), 187-196. http://doi.org/10.12989/scs.2017.25.2.053.
  53. Zakaria, M. (2014), "Effect of hall current on generalized Magneto-thermoelasticity Micropolar solid subject to ramp type heating", Appl. Mech., 50(1), 92-104.
  54. Zerrouki, R., Karas, A., Zidour, M., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam", Struct. Eng. Mech., 78(2), 117-124. http://doi.org/10.12989/sem.2021.78.2.117.