DOI QR코드

DOI QR Code

Using Echolocation Search Algorithm (ESA) for truss size optimization

  • Nobahari, Mehdi (Department of Civil Engineering, Neyshabur Branch, Islamic Azad University) ;
  • Ghabdiyan, Nafise (Department of Mathematics, Neyshabur Branch, Islamic Azad University)
  • Received : 2021.08.20
  • Accepted : 2022.03.22
  • Published : 2022.03.25

Abstract

Due to limited resources, and increasing speed of development, the optimal use of available resources has become the most important challenge of human societies. In the last few decades, many researchers have focused their research on solving various optimization problems, providing new optimization methods, and improving the performance of existing optimization methods. Echolocation Search Algorithm (ESA) is an evolutionary optimization algorithm that is based on mimicking the mechanism of the animals such as bats, dolphins, oilbirds, etc in food finding to solve optimization problems. In this paper, the ability of ESA for solving truss size optimization problems with continuous variables is investigated. To examine the efficiency of ESA, three benchmark examples are considered. The numerical results exhibit the effectiveness of ESA for solving truss optimization problems.

Keywords

References

  1. Astroza, R., Nguyen, L.T. and Nestorovic, T. (2016), "Finite element model updating using simulated annealing hybridized with unscented Kalman filter", Comput. Struct., 177, 176-191. https://doi.org/10.1016/j.compstruc.2016.09.001.
  2. Bekdas, G., Nigdeli, S.M. and Yang, X.S. (2015), "Sizing optimization of truss structures using flower pollination algorithm", Appl. Soft Comput., 37, 322-331. https://doi.org/10.1016/j.asoc.2015.08.037.
  3. Biglar, M., Gromada, M., Stachowicz, F. and Trzepiecinski, T. (2015), "Optimal configuration of piezoelectric sensors and actuators for active vibration control of a plate using a genetic algorithm", Acta Mechanica, 226(10), 3451-3462. https://doi.org/10.1007/s00707-015-1388-1.
  4. Camp, C.V, and Farshchin, M. (2014), "Design of space trusses using modified teaching - learning based optimization", Eng. Struct., 62-63, 87-97. https://doi.org/10.1016/j.engstruct.2014.01.020.
  5. Cao, H., Qian, X., Chen, Z. and Zhu, H. (2017), "Enhanced particle swarm optimization for size and shape optimization of truss structures", Eng. Optimization, 49(11), 1939-1956. https://doi.org/10.1080/0305215X.2016.1273912.
  6. Cazacu, R. and Grama, L. (2014), "Steel truss optimization using genetic algorithms and FEA", Procedia Technology, 12, 339-346. https://doi.org/10.1016/j.protcy.2013.12.496.
  7. De Maeijer, P.K., Craeye, B., Snellings, R., Kazemi-Kamyab, H., Loots, M., Janssens, K. and Nuyts, G. (2020), "Effect of ultrafine fly ash on concrete performance and durability", Construct. Build. Mater., 263, 120493. https://doi.org/10.1016/j.conbuildmat.2020.120493.
  8. Gandomi, A.H., Talatahari, S., Yang, X.S. and Deb, S. (2013), "Design optimization of truss structures using cuckoo search algorithm", Struct. Des. Tall Spec. Build., 22(17), 1330-1349. https://doi.org/10.1002/tal.1033.
  9. Golewski, G.L. (2018), "Green concrete composite incorporating fly ash with high strength and fracture toughness", J. Cleaner Production, 172, 218-226. https://doi.org/10.1016/j.jclepro.2017.10.065.
  10. Heydari, A. (2018), "Exact vibration and buckling analyses of arbitrary gradation of nano-higher order rectangular beam", Steel Compos. Struct., 28(5), 589-606. https://doi.org/10.12989/scs.2018.28.5.589.
  11. Heydari, A. (2019), "Elasto-plastic analysis of cylindrical vessel with arbitrary material gradation subjected to thermo-mechanical loading via DTM", Arab. J. Sci. Eng., 44(10), 8875-8891. https://doi.org/10.1007/s13369-019-03910-x.
  12. Islam, M.S., Do, J. and Kim, D. (2018), "Vibration control of offshore wind turbine using RSM and PSO-optimized Stockbridge damper under the earthquakes", Smart Struct. Syst., 21(2), 207-223. https://doi.org/10.12989/sss.2018.21.2.207.
  13. Kang, F., Li, J.J. and Xu, Q. (2012), "Damage detection based on improved particle swarm optimization using vibration data", Appl. Soft Comput., 12(8), 2329-2335. https://doi.org/10.1016/j.asoc.2012.03.050.
  14. Kaveh, A. and Khayatazad, M. (2013), "Ray optimization for size and shape optimization of truss structures", 117, 82-94. https://doi.org/10.1016/j.compstruc.2012.12.010.
  15. Kaveh, A. and Talatahari, S. (2009), "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures", Comput. Struct., 87(5-6), 267-283. https://doi.org/10.1016/j.compstruc.2009.01.003.
  16. Kaveh, A., Mirzaei, B. and Jafarvand, A. (2015a), "An improved magnetic charged system search for optimization of truss structures with continuous and discrete variables", Appl. Soft Comput. J., 28, 400-410. https://doi.org/10.1016/j.asoc.2014.11.056.
  17. Kaveh, A., Mirzaei, B. and Jafarvand, A. (2015b), "An improved magnetic charged system search for optimization of truss structures with continuous and discrete variables", Appl. Soft Comput., 28, 400-410. https://doi.org/10.1016/j.asoc.2014.11.056.
  18. Lamberti, L. (2008), "An efficient simulated annealing algorithm for design optimization of truss structures", Comput. Struct., 86(19-20), 1936-1953. https://doi.org/10.1016/j.compstruc.2008.02.004.
  19. Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82(9-10), 781-798. https://doi.org/10.1016/j.compstruc.2004.01.002.
  20. Li, L.J., Huang, Z.B., Liu, F. and Wu, Q.H. (2007), "A heuristic particle swarm optimizer for optimization of pin connected structures", Comput. Struct., 85(7-8), 340-349. https://doi.org/10.1016/j.compstruc.2006.11.020.
  21. Maeda, H., Kashiyama, T., Sekimoto, Y., Seto, T. and Omata, H. (2021), "Generative adversarial network for road damage detection" Comput. Aided Civil Infrastruct. Eng., 36(1), 47-60. https://doi.org/10.1111/mice.12561.
  22. Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017a), "A novel heuristic search algorithm for optimization with application to structural damage identification", Smart Struct. Syst., 19(4). https://doi.org/10.12989/sss.2017.19.4.449.
  23. Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017b), "Truss structure damage identification using residual force vector and genetic algorithm", Steel Compos. Struct., 25(4). https://doi.org/10.12989/scs.2017.25.4.485.
  24. Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2018), "A fast and robust method for damage detection of truss structures", Appl. Mathem. Modelling. 68, 368-382. https://doi.org/10.1016/j.apm.2018.11.025.
  25. Ozbasaran, H. and Eryilmaz, M. (2020), "Truss-sizing optimization attempts with CSA : a detailed evaluation", Soft Computing, 24(22), 16775-16801. https://doi.org/10.1007/s00500-020-04972-y.
  26. Salcedo-Sanz, S., Camacho-Gomez, C., Magdaleno, A., Pereira, E. and Lorenzana, A. (2017), "Structures vibration control via tuned mass dampers using a co-evolution coral reefs optimization algorithm", J. Sound Vib., 393, 62-75. https://doi.org/10.1016/j.jsv.2017.01.019.
  27. Shabbir, F. and Omenzetter, P. (2015), "Particle swarm optimization with sequential niche technique for dynamic finite element model updating", Comput. Aided Civil Infrastruct. Eng., 30(5), 359-375. https://doi.org/10.1111/mice.12100.
  28. Sonmez, M. (2011a), "Artificial Bee Colony algorithm for optimization of truss structures", 11, 2406-2418. https://doi.org/10.1016/j.asoc.2010.09.003.
  29. Sonmez, M. (2011b), "Discrete optimum design of truss structures using artificial bee colony algorithm", Struct. Multidisciplinary Optimization, 43(1), 85-97. https://doi.org/10.1007/s00158-010-0551-5.
  30. Tiachacht, S., Bouazzouni, A., Khatir, S., Wahab, M.A., Behtani, A. and Capozucca, R. (2018), "Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm", Eng. Struct., 177, 421-430. https://doi.org/10.1016/j.engstruct.2018.09.070.
  31. Wei, Z., Liu, J. and Lu, Z. (2018), "Structural damage detection using improved particle swarm optimization", Inverse Prob. Sci. Eng., 26(6), 792-810. https://doi.org/10.1080/17415977.2017.1347168.
  32. Zhengtong, H., Zhengqi, G., Xiaokui, M. and Wanglin, C. (2019), "Multimaterial layout optimization of truss structures via an improved particle swarm optimization algorithm", Comput. Struct., 222, 10-24. https://doi.org/10.1016/j.compstruc.2019.06.004.
  33. Zuo, W., Bai, J. and Li, B. (2014), "A hybrid OC-GA approach for fast and global truss optimization with frequency constraints", Appl. Soft Comput., 14, 528-535. https://doi.org/10.1016/j.asoc.2013.09.002.