DOI QR코드

DOI QR Code

Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT

  • Djilali, Nassira (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Kaci, Abdelhakim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Selim, Mahmoud M. (Department of Mathematics, Al-Aflaj College of Science and Humanities, Prince Sattam bin Abdulaziz University) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdeldjebbar (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Benrahou, Kouider Halim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Mahmoud, S.R. (GRC Department, Applied College, King Abdulaziz University)
  • Received : 2021.06.22
  • Accepted : 2022.03.20
  • Published : 2022.03.25

Abstract

This work presents a non-linear cylindrical bending analysis of functionally graded plate reinforced by single-walled carbon nanotubes (SWCNTs) in thermal environment using a simple integral higher-order shear deformation theory (HSDT). This theory does not require shear correction factors and the transverse shear stresses vary parabolically through the thickness. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are considered to be graded in the thickness direction, and are estimated through a micromechanical model. The non-linear strain-displacement relations in the Von Karman sense are used to study the effect of geometric non-linearity and the solution is obtained by minimization of the total potential energy. The numerical illustrations concern the nonlinear bending response of FG-CNTRC plates under different sets of thermal environmental conditions, from which results for uniformly distributed CNTRC plates are obtained as benchmarks.

Keywords

References

  1. Adiyaman. G., Yaylaci. M. and Birinci A., (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069.
  2. Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021), "Damped forced vibration analysis of layered", Smart Struct. Syst., 27(4), 669-689. https://doi.org/10.12989/sss.2021.27.4.669.
  3. Attia, M.A. and Abdel Rahman, A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-2. https://doi.org/10.1016/j.ijengsci.2018.02.005.
  4. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603.
  5. Bachtold, A. (2001), "Logic circuits with carbon nanotube transistors", Science., 294(5545), 1317-1320. https://doi.org/10.1126/science.1065824.
  6. Bakhti, K., Kaci, A., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and AddaBedia, E.A. (2013), "Large deformation analysis for functionally graded carbon nanotube-reinforced composite plates using an efficient and simple refined theory", Steel Compos. Struct., 14(4), 335-347. https://doi.org/10.12989/SCS.2013.14.4.335.
  7. Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/JNanoR.62.108.
  8. Bensattalah, T., Zidour, M., Daouadji, T.H. and Bouakaz, K. (2019), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mech., 70(3), 269-277. doi.org/10.12989/sem.2019.70.3.269.
  9. Bhaskar, K. and Varadan, T. (2014), Plates: Theories and Applications, John Wiley & Sons.
  10. Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Bedia, E.A. (2020), ,,Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.
  11. Chang, T., Geng, J. and Guo, X. (2005), "Chirality- and size-dependent elastic properties of single-walled carbon nanotubes", Appl. Phys. Lett., 87(25), https://doi.org/10.1063/1.2149216.
  12. Chikh, A. (2019), "Free vibration analysis of simply supported P-FGM nanoplate using a nonlocal four variables shear deformation plate theory", Strojnicky casopis- J. Mech. Eng., 69(4), 9-24. https://doi.org/10.2478/scjme-2019-0039.
  13. Chikh, A. (2020), "Investigations in static response and free vibration of a functionally graded beam resting on elastic foundations", Frattura ed Integrita Strutturale, 14(51), 115-126. https://doi.org/10.3221/IGF-ESIS.51.09.
  14. Chou, T.W. (2005), Microstructural Design of Fiber Composites, Cambridge University Press.
  15. Coda, H.B., Paccola, R.R. and Carrazedo, R. (2017), "Zig-Zag effect without degrees of freedom in linear and non linear analysis of laminated plates and shells", Compos. Struct., 161, 32-50. https://doi.org/10.1016/j.compstruct.2016.10.129.
  16. Cuong-Le, T., Nguyen, K. D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  17. Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T. and Smalley, R. E. (1996), "Nanotubes as nanoprobes in scanning probe microscopy", Nature., 384(6605), 147-150. https://doi.org/10.1038/384147a0.
  18. Darvishgohari, H., Zarastvand, M., Talebitooti, R. and Shahbazi, R. (2021), "Hybrid control technique for vibroacoustic performance analysis of a smart doubly curved sandwich structure considering sensor and actuator layers", J. Sandwich Struct. Mater., 23(5), 1453-1480. https://doi.org/10.1177/1099636219896251.
  19. Dresselhaus, M.S. and Avouris, P. (2001), "Introduction to carbon materials research", Carbon Nanotubes1-9. https://doi.org/10.1007/3-540-39947-X_1.
  20. Elliott, J.A., Sandler, J.K.W., Windle, A.H., Young, R.J. and Shaffer, M.S.P. (2004), "Collapse of single-wall carbon nanotubes is diameter dependent", Phys. Rev. Lett., 92(9), https://doi.org/10.1103/physrevlett.92.095501.
  21. Esawi, A.M.K and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022.
  22. Fukuda, H. and Kawata, K. (1974), "On Young's modulus of short fibre composites", Fibre Sci. Technol., 7(3), 207-222. https://doi.org/10.1016/0015-0568(74)90018-9.
  23. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.
  24. Ghassabi, M., Zarastvand, M.R. and Talebitooti, R. (2020), "Investigation of state vector computational solution on modeling of wave propagation through functionally graded nanocomposite doubly curved thick structures", Eng. Comput., 36(4), 1417-1433. https://doi.org/10.1007/s00366-019-00773-6.
  25. Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., 6(4), 299-321. https://doi.org/10.12989/ANR.2018.6.4.299.
  26. Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24.
  27. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci.., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.
  28. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
  29. Iijima, S. and Ichihashi, T. (1993), "Single-shell carbon nanotubes of 1-nm diameter", Nature., 363, 603-605. https://doi.org/10.1038/363603a0.
  30. Jalal, M., Moradi-Dastjerdi, R. and Bidram, M. (2018), "Big data in nanocomposites: ONN approach and mesh-free method for functionally graded carbon nanotube-reinforced composites", J. Comput. Des. Eng., 6(2), 209-223. https://doi.org/10.1016/j.jcde.2018.05.003.
  31. Jin, Y. and Yun, F.G. (2003), "Simulation of elastic properties of single-walled carbon nanotubes", Compos. Sci. Technol., 63(11), 1507-1515. https://doi.org/10.1016/s0266-3538(03)00074-5.
  32. Kaczkowski Z. (1968), Plates-Statistical Calculations, Warsaw: Arkady.
  33. Karami, B. and Janghorban, M. (2020), "On the mechanics of functionally graded nanoshells", Int. J. Eng. Sci., 153, 103309. https://doi.org/10.1016/j.ijengsci.2020.103309.
  34. Khatir, S., Tiachacht, S., Le Thanh, C., Ghandourah, E., Mirjalili, S. and Wahab, M.A. (2021), "An improved Artificial Neural Network using Arithmetic Optimization Algorithm for damage assessment in FGM composite plates", Compos. Struct., 273, 114287. https://doi.org/10.1016/j.compstruct.2021.114287.
  35. Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory", Comput. Concrete, 26(1), 31-52. http://dx.doi.org/10.12989/cac.2020.26.1.031
  36. Kiani, Y. (2016), "Shear buckling of FG-CNT reinforced composite plates using Chebyshev-Ritz method", Compos. Part B: Eng., 105, 176-187. https://doi.org/10.1016/j.compositesb.2016.09.001.
  37. Kiani, Y. (2017), "Thermal buckling of temperature-dependent FG-CNT-reinforced composite skew plates", J. Thermal Stresses., 40(11), 1442-1460. https://doi.org/10.1080/01495739.2017.1336742.
  38. Kiani, Y. (2018), "Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets", J. Thermal Stresses., 41(7), 866-882. https://doi.org/10.1080/01495739.2018.1425645.
  39. Kiani, Y. and Mirzaei, M. (2019), "Isogeometric thermal postbuckling of FG-GPLRC laminated plates", Steel Compos. Struct., 32(6), 821-832. https://doi.org/10.12989/SCS.2019.32.6.821.
  40. Lau, K.T., Gu, C., GH, Ling H.Y. and Reid, S.R. (2004), "Stretching process of single- and multiwalled carbon nanotubes for nanocomposite applications", Carbon., 42, 426-428. https://doi.org/10.1016/j.carbon.2003.10.040.
  41. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. http://dx.doi.org/10.12989/sem.2019.69.4.427.
  42. Mallek, H., Jrad, H., Algahtani, A., Wali, M. and Dammak, F. (2019), "Geometrically non-linear analysis of FG-CNTRC shell structures with surface-bonded piezoelectric layers", Comput. Methods Appl. Mech. Eng., 347, 679-699. https://doi.org/10.1016/j.cma.2019.01.001.
  43. Mars, J., Koubaa, S., Wali, M. and Dammak, F. (2017), "Numerical analysis of geometrically non-linear behavior of functionally graded shells", Latin Amer. J. Solids Struct., 14(11), 1952-1978. https://doi.org/10.1590/1679-78253914.
  44. Mehar, K. and Panda, S.K. (2017), "Thermoelastic analysis of FG-CNT reinforced shear deformable composite plate under various loading", Int. J. Comput. Methods., 14(2), 1750019. https://doi.org/10.1142/S0219876217500190.
  45. Mehar, K., Panda, S.K. and Sharma, N. (2020), "Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure", Eng. Struct., 211, 110444. https://doi.org/10.1016/j.engstruct.2020.110444.
  46. Motezaker, M. and Eyvazian, A. (2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., 34(2), 289-297. https://doi.org/10.12989/scs.2020.34.2.289.
  47. Nguyen, V.T., Nguyen, D.K., Ngo, D.T., Phuong, T. and Nguyen, D.D. (2017), "Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shear deformable plates with temperature-dependent material properties and surrounded on elastic foundations", J. Thermal Stresses., 40(10), 1254-1274. https://doi.org/10.1080/01495739.2017.1338928.
  48. Oner E., Yaylaci M. and Birinci A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.000.
  49. Panc, V. (1975), Theories of Elastic Plates, Leyden: Springer Science&Business Media.
  50. Rahmatnezhad, K., Zarastvand, M.R. and Talebitooti, R. (2021), "Mechanism study and power transmission feature of acoustically stimulated and thermally loaded composite shell structures with double curvature", Compos. Struct., 276, 114557. https://doi.org/10.1016/j.compstruct.2021.114557.
  51. Reddy, J.N. (1997), Mechanics of Laminated Composite Plates, Boca Raton: CRC Press.
  52. Reissner, E. (1975), "On transverse bending of plates, including the effect of transverse shear deformation", Int J Solids Struct, 11(5), 569-573. https://doi.org/10.1016/0020-7683(75)90030-X.
  53. Rezaiee-Pajand, M., Mokhtari, M. and Hozhabrossadati, S.M. (2019), "Application of Hencky bar-chain model to buckling analysis of elastically restrained Timoshenko axially functionally graded carbon nanotube reinforced composite beams", Mech. Based Des. Struct. Machines., 1-22. https://doi.org/10.1080/15397734.2019.1596129.
  54. Sahmani, S. and Fattahi, A.M. (2017), "Nonlocal size dependency in nonlinear instability of axially loaded exponential shear deformable FG-CNT reinforced nanoshells under heat conduction", Europ. Phys. J. Plus., 132(5), 231. https://doi.org/10.1140/epjp/i2017-11497-5.
  55. Seilsepour, H., Zarastvand, M. and Talebitooti, R. (2022), "Acoustic insulation characteristics of sandwich composite shell systems with double curvature: The effect of nature of viscoelastic core", J. Vib. Control, 10775463211056758. https://doi.org/10.1177/10775463211056758.
  56. Selmi, A. (2020a), "Dynamic behavior of axially functionally graded simply supported beams", Smart Struct. Syst., 25(6), 669-678. https://doi.org/10.12989/sss.2020.25.6.669.
  57. Selmi, A. (2020b), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. http://dx.doi.org/10.12989/sss.2020.26.3.361.
  58. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  59. Sweeney, C.B., Lackey, B.A., Pospisil, M.J., Achee, T.C., Hicks, V. K., Moran, A.G., Teipel, R.B., Saed, A.M. and Green, M.J. (2017), "Welding of 3D-printed carbon nanotube-polymer composites by locally induced microwave heating", Sci. Adv., 3(6), e1700262. https://doi.org/10.1126/sciadv.1700262.
  60. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
  61. Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.
  62. Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: a review", Compos. Sci. Technol., 61(13), 1899-1912. https://doi.org/10.1016/s0266-3538(01)00094-x.
  63. Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. http://dx.doi.org/10.12989/cac.2020.26.1.053.
  64. Vodenitcharova, T. and Zhang, L.C. (2003), "Effective wall thickness of a single-walled carbon nanotube", Phys. Rev. B, 68, 165401. https://doi.org/10.1103/physrevb.68.165401.
  65. Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A., (2021c), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
  66. Yaylaci, M., Yayli, M., Uzun Yaylaci, E., Olmez, H. and Birinci, A., (2021b), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
  67. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
  68. Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
  69. Yaylaci, E. U., Yaylaci, M., Olmez, H., & Birinci, A. (2020a), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.000.
  70. Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A., (2020b), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
  71. Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A., (2021a), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
  72. Zarastvand, M.R., Ghassabi, M. and Talebitooti, R. (2021), "Acoustic insulation characteristics of shell structures: A review", Archive. Comput. Meth. Eng., 28(2), 505-523. https://doi.org/10.1007/s11831-019-09387-z.
  73. Zerrouki, R., Karas, A. and Zidour, M. (2020), "Critical buckling analyses of nonlinear FG-CNT reinforced nano-composite beam", Adv. Nano Res., 9(3), 211-220. https://doi.org/10.12989/anr.2020.9.3.211.
  74. Zghal, S., Frikha, A. and Dammak, F. (2018), "Non-linear bending analysis of nanocomposites reinforced by graphene-nanotubes with finite shell element and membrane enhancement", Eng. Struct., 158, 95-109. https://doi.org/10.1016/j.engstruct.2017.12.017.
  75. Zhang, C.L. and Shen, H.S. (2006b), "Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation", Carbon, 44(13), 2608-2616. https://doi.org/10.1016/j.carbon.2006.04.037.
  76. Zhang, C.L. and Shen, H.S. (2006a), "Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation", Appl. Phys. Lett., 89(8), 081904. https://doi.org/10.1063/1.2336622.
  77. Zhong, R., Wang, Q., Tang, J., Shuai, C. and Qin, B. (2018), "Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates", Compos. Struct., 194, 49-67. https://doi.org/10.1016/j.compstruct.2018.03.104.
  78. Zhu, P., Lei, Z. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct. 94, 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.