DOI QR코드

DOI QR Code

Experimental investigation on the behaviour of UHPC-steel composite slabs under hogging moment

  • Gao, Xiao-Long (Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Ministry of Education) ;
  • Wang, Jun-Yan (Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Ministry of Education) ;
  • Bian, Chen (Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Ministry of Education) ;
  • Xiao, Ru-Cheng (College of civil engineering, Tongji University) ;
  • Ma, Biao (Shanghai Municipal Engineering Design Institute(Group) Co., Ltd.)
  • Received : 2019.11.08
  • Accepted : 2022.03.17
  • Published : 2022.03.25

Abstract

Ultra high performance concrete (UHPC) can be used in the UHPC-steel composite structures especially for bridge structures to achieve high stiffness and high fatigue resistance with low self-weight. The structural performances of UHPC-steel composite slabs subjected to hogging moment have a significant influence on the global stiffness and durability of UHPC-steel composite structures. In order to study the structural behaviors of non-steam-cured UHPC-steel composite slabs subjected to negative moment, five composite slabs combined the thin UHPC layers to steel plates via shear stud connecters with the diameter of 16mm were fabricated and tested under negative moment. The test program aimed to investigate the effect of stud spacing and longitudinal reinforcement ratios on the failure mode, load-deflection behaviors, cracking patterns, bond-slips, and carrying capacities of composite slabs subjected to negative moment. In addition, direct tensile tests for the dog-bone UHPC specimens with longitudinal reinforcement bars were carried out to study the effect of reinforcement bars on the tensile strength of UHPC in the thin structure members. Based on the experimental results, analytical models were also developed to predict the cracking load and ultimate load of UHPC-steel composite slabs subjected to negative moment.

Keywords

Acknowledgement

This work was supported by the Major Project of Science and Technology of Ningbo [Grant No. 2020Z034] and the science and technology attack project of Henan Province [Grant No. 222102320194]. The financial supports are greatly appreciated.

References

  1. AFGC Scientific and Technical Documents (2002), Ultra High Performance Fibre-Reinforced Concretes. Interim recommendations, Association Francaise deGenie Civil (AFGC), Bagneux, France.
  2. Al-Osta, M.A., Isa, M.N., Baluch, M.H. and Rahman, M.K. (2017), "Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete", Constr. Build. Mater., 134(3), 279-296. https://doi.org/10.1016/j.conbuildmat.2016.12.094.
  3. ASTM (2013). Standard Test Methods and Definitions for Mechanical Testing of Steel Products, A370-13, American Society for Testing and Materials, West Conshohocken, PA, USA.
  4. CECS 226 (2007), Technical Specification for Welding of Stud, MCC Construction Research Institute, Beijing, China.
  5. Chen, S. (2003), "Load carrying capacity of composite slabs with various end constraints", J. Constr. Steel. Res., 59(3), 385-403. https://doi.org/10.1016/S0143-974X(02)00034-2.
  6. Dieng, L., Marchand, P., Gomes, F., Terrier, C. and Toutlemonde, F. (2013), "Use of UHPFRC overlay to reduce stresses in orthotropic steel decks", J. Constr. Steel. Res., 89(10), 30-41. https://doi.org/10.1016/j.jcsr.2013.06.006.
  7. Hamoda, A., Hossain, K.M.A., Sennah, K., Shoukry, M. and Mahmoud, Z. (2017), "Behaviour of composite high performance concrete slab on steel I-beams subjected to static hogging moment", Eng. Struct., 140(6), 51-65. https://doi.org/10.1016/j.engstruct.2017.02.030.
  8. Habel, K. and Gauvreau, P. (2008), "Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading", Cem. Concr. Compos., 30(10), 938-946. https://doi.org/10.1016/j.cemconcomp.2008.09.001.
  9. Hoang, A.L. and ehling, E. (2017), "Analysis of circular steel tube confined UHPC stub columns", Steel. Compos. Struct., 23(6), 669-682, https://doi.org/10.12989/scs.2017.23.6.669.
  10. Kan, Y.C., Chen, L.H. and Yen, T. (2013), "Mechanical behavior of lightweight concrete steel deck", Constr. Build. Mater., 42(5). 78-86, http://dx.doi.org/10.1016/j.conbuildmat.2013.01.007.
  11. Kim, J.S., Kwark, J., Joh, C., Yoo, S.W. and Lee, K.C. (2015), "Headed stud shear connector for thin ultrahigh-performance concrete bridge deck", J. Constr. Steel. Res., 108(5), 23-30. https://doi.org/10.1016/j.jcsr.2015.02.001.
  12. Kruszewski, D., Wille, K. and Zaghi, A.E. (2018), "Design considerations for headed shear studs embedded in ultra-high performance concrete as part of a novel bridge repair method", J. Constr. Steel. Res., 149(10), 180-194. https://doi.org/10.1016/j.jcsr.2018.07.015.
  13. Le, A.H., Ekkehard, F., Thai, D.K. and Nguyen, C.V. (2018), "Simplified stress-strain model for circular steel tube confined UHPC and UHPFRC columns", Steel. Compos. Struct., 29(1), 125-138, https://doi.org/10.12989/scs.2018.29.1.125.
  14. Lin, W., Yoda, T. and Taniguchi, N. (2004), "Application of SFRC in steel-concrete composite beams subjected to hogging moment", J. Constr. Steel. Res., 101(10), 175-183. https://doi.org/10.1016/j.jcsr.2014.05.008.
  15. Lin, W., Yoda, T. and Taniguchi, N. (2014), "Application of SFRC in steel-concrete composite beams subjected to hogging moment", J. Constr. Steel. Res., 101(10), 175-183. https://doi.org/10.1016/j.jcsr.2014.05.008.
  16. Lin, Y.Z., Yan, J.C., Cao, Z.G., Zeng, X.Z, Fan, F. and Zou, C.Y. (2018), "Ultimate strength behaviour of S-UHPC-S and SCS sandwich beams under shear loads", J. Constr. Steel. Res., 149(10), 195-206, https://doi.org/10.1016/j.jcsr.2018.07.024.
  17. Loh, H.Y., Uy, B. and Bradford, M.A. (2004), "The effects of partial shear connection in the hogging moment regions of composite beams: Part I-Experimental study", J. Constr. Steel. Res., 60(6), 897-919. https://doi.org/10.1016/j.jcsr.2003.10.008.
  18. Makita, T. and Bruhwiler, E. (2014), "Tensile fatigue behaviour of ultra-high performance fibre reinforced concrete (UHPFRC)", Mater. Struct., 47(3), 475-491. https://doi.org/10.1617/s11527-013-0073-x.
  19. Manfredi, G., Fabbrocino, G. and Cosenza, E. (1999), "Modeling of steel-concrete composite beams under negative bending", J. Eng. Mech-ASCE., 125(6), 654-662. https://10.1061/(ASCE)0733-9399(1999)125:6(654).
  20. Mao, L., Barnett, S.J., Tyas, A., Warren, J., Schleyer, G. and Zaini, S. (2015), "Response of small scale ultra high performance fibre reinforced concrete slabs to blast loading", Constr. Build. Mater., 93(9), 822-830. https://doi.org/10.1016/j.conbuildmat.2015.05.085.
  21. Marciukaitis, G., Jonaitis, B. and Valivonis, J. (2006), "Analysis of deflections of composite slabs with profiled sheeting up to the ultimate moment", J. Constr. Steel. Res., 62(8), 820-830. https://doi.org/10.1016/j.jcsr.2005.11.022.
  22. MCS-EPFL (2016). Ultra-High Performance Fibre Reinforced Cement-based composites (UHPFRC): Construction material, dimensioning und application, Swiss Federal Institute of Technology, Switzerland.
  23. Prem, P.R. and Murthy, A.R. (2016), "Acoustic emission and flexural behaviour of RC beams strengthened with UHPC overlay", Constr. Build. Mater., 123(10), 481-492. https://doi.org/10.1016/j.conbuildmat.2016.07.033.
  24. Ryu, H.K., Chang, S.P., Kim, Y.J. and Kim, B.S. (2005), "Crack control of a steel and concrete composite plate girder with prefabricated slabs under hogging moments", Eng. Struct., 27(11), 1613-1624. https://doi.org/10.1016/j.engstruct.2005.05.015.
  25. Shao, X.D., Yi, D.T., Huang, Z.Y., Zhao, H., Chen, B. (2013), "Basic performance of the composite deck system composed of orthotropic steel deck and ultrathin RPC layer", J. Bridge. Eng., 18(5), 417-428, https://10.1061/(asce)be.1943-5592.0000348.
  26. Shao, Y., Shao, X.D., Li, L.F. and Wu, J.J. (2018), "Optimum Combination of Bridge and Deck Systems for Superspan Cable-Stayed Bridges", J. Bridge. Eng., 23(1), 04017112. https://10.1061/(ASCE)BE.1943-5592.0001161.
  27. Singh, M., Sheikh, A.H., Mohamed Ali, M.S., Visintin, P. and Griffith, M.C. (2017), "Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams", Constr. Build. Mater., 138(5), 12-25. https://doi.org/10.1016/j.conbuildmat.2017.02.002.
  28. Sun, Q., Yang, Y., Fan, J., Zhang, Y. and Bai, Y. (2014), "Effect of longitudinal reinforcement and prestressing on stiffness of composite beams under hogging moments", J. Constr. Steel. Res., Vol. 100(9), 1-11. https://doi.org/10.1016/j.jcsr.2014.04.017.
  29. Tanarslan, H.M., Alver, N., Jahangiri, R., Yalcinkaya, C. and Yazici, H. (2017), "Flexural strengthening of RC beams using UHPFRC laminates: Bonding techniques and rebar addition", Constr. Build. Mater., 155(11), 45-55. https://doi.org/10.1016/j.conbuildmat.2017.08.056.
  30. Tayeh, B.A., Bakar, B.A., Johari, M.M. and Voo, Y.L. (2012), "Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay", Constr. Build. Mater., 36(11), 538-548. https://doi.org/10.1016/j.conbuildmat.2012.06.013.
  31. Vasdravellis, G., Uy, B., Tan, E.L. and Kirkland, B. (2012), "The effects of axial tension on the hogging-moment regions of composite beams", J. Constr. Steel. Res., 68(1), 20-33. https://doi.org/10.1016/j.jcsr.2012.01.002.
  32. Wang, D.H., Shi, C.J. and Wu, Z.M. (2015), "A review on ultra high performance concrete: Part II. Hydration, microstructure and properties", Constr. Build. Mater., 96(10), 368-377. https://doi.org/10.1016/j.conbuildmat.2015.08.095.
  33. Wang, J.Q., Xu, Q.Z., Yao, Y.M., Qi, J.N. and Xiu, H.L. (2018), "Static behavior of grouped large headed stud-UHPC shear connectors in composite structures", Compos. Struct., 206(11), 202-214. https://doi.org/10.1016/j.compstruct.2018.08.038.
  34. Wang, J.Y. and Guo, J.Y. (2018), "Damage investigation of ultra high performance concrete under direct tensile test using acoustic emission techniques", Cem. Concr. Compos., 88(4), 17-28. https://doi.org/10.1016/j.cemconcomp.2018.01.007.
  35. Wang, S., Wu, C. and Li V.C. (2001), "Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)", ACI. MATER. J., 98(6), 483-492.
  36. Wang, Z., Nie, X., Fan, J.S., Lu, X.Y. and Ding, R. (2019), "Experimental and numerical investigation of the interfacial properties of non-steam-cured UHPC-steel composite beams", Constr. Build. Mater., 195(1), 323-339. https://doi.org/10.1016/j.conbuildmat.2018.11.057.
  37. Wille, K., Naaman, A.E. and Parra-Montesinos, G.J. (2001), "Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way", ACI. MATER. J., 108(1), 46-54.
  38. Wu, X.G. and Lin, Y. (2016), "Flexural behavior of UHPC-RC composite beam", Steel. Compos. Struct., 22(2), 387-398. https://doi.org/10.12989/scs.2016.22.2.387.
  39. Yoo, D.Y. and Banthia, N. (2016), "Mechanical properties of ultra-high-performance fiber-reinforced concrete: a review", Cem. Concr. Compos., 73(10), 267-280. https://doi.org/10.1016/j.cemconcomp.2016.08.001.
  40. Yoo, D.Y. and Banthia, N. (2017), "Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast", Constr. Build. Mater., 149(9), 416-431. https://doi.org/10.1016/j.conbuildmat.2017.05.136.
  41. Yoo, D.Y., Banthia, N. and Yoon, Y.S. (2016), "Predicting service deflection of ultra-high-performance fiber reinforced concrete beams reinforced with GFRP bars", Compos. Part. B-Eng., 99(8), 381-397. https://doi.org/10.1016/j.compositesb.2016.06.013.
  42. Yoo, S.W. and Choo, J.F. (2016), "Evaluation of the flexural behavior of composite beam with inverted-T steel girder and steel fiber reinforced ultra high performance concrete slab", Eng. Struct., 118(7), 1-15. https://doi.org/10.1016/j.engstruct.2016.03.052.
  43. Yin, H., Teo, W. and Shirai, K. (2017), "Experimental investigation on the behaviour of reinforced concrete slabs strengthened with ultra-high performance concrete", Constr. Build. Mater., 155(11), 463-474. https://doi.org/10.1016/j.conbuildmat.2017.08.077.
  44. Zhang, S.H., Shao, X.D. and Cao, J.H. (2016), "Fatigue performance of a lightweight composite bridge deck with open ribs", J. Bridge. Eng., 21(7), 04016039. https://10.1061/(asce)be.1943-5592.0000905.
  45. Zhang, Y., Cai, S.K. and Zhu, Y.P., Fan, L. and Shao, X.D. (2020), "Flexural responses of steel-UHPC composite beams under hogging moment", Eng. Struct., 206(1), 1-15. https://doi.org/10.1016/j.engstruct.2019.110134.