Acknowledgement
This research was funded by the National Key R & D Program of China (No.2019YFB1600702) and Natural Science Foundation of China (Grant No. 51678191 and No. 51605116).
References
- Abdullah, F. (2016), "Optimizing rib width to height and rib spacing to deck plate thickness ratios in orthotropic decks", Cogent Eng. 3(1), http://doi.org.10.1080/23311916.2016.1154703.
- ANSYS (2016), Engineering Software Inc. https://www.ansys.com
- Aygul, M., Al-emrani, M. and Urushadze, S. (2012), "Modelling and fatigue life assessment of orthotropic bridge deck details using FEM", Int. J. Fatigue, 40, 129-142. https://doi.org/10.1016/j.ijfatigue.2011.12.015 .
- Sonsino, C.M., Bruder, T. and Baumgartner, J. (2010), "SN lines for welded thin joints-suggested slopes and FAT values for applying the notch stress concept with various reference radii", Welding iWorld, 54(11), R375-R392. https://doi.org/10.1007/BF03266752.
- Sonsino, C.M., Fricke, W., De Bruyne, F., Hoppe, A., Ahmadi, A. and Zhang, G. (2012), "Notch stress concepts for the fatigue assessment of welded joints-Background and applications", Int. J. Fatigue, 34(1), 2-16. https://doi.org/10.1016/j.ijfatigue.2010.04.011.
- De Corte, Wouter (2007), "Improvements to the analysis of floor beams with additional web cutouts for orthotropic plated decks with closed continuous ribs", Steel Compos. Struct., 7(1), 1-18. https://doi.org/10.12989/scs.2007.7.1.001.
- Dong P (2001), "A structural stress definition and numerical implementation for fatigue analysis of welded joints", Int. J. Fatigue, 23(10), 865-876. https://doi.org/10.1016/S0142-1123(01)00055-X.
- Dong, P., Wei, Z. and Hong, J.K. (2009), "A path-dependent cycle counting method for variable-amplitude multiaxial loading", Int. J. Fatigue, 32(4), 720-734. https://doi.org/10.1016/j.ijfatigue.2009.10.010.
- E. Bernatowska, D. Len, and L. Sleczka (2019), "Comparative study of fatigue life assessment made by different approaches." Proceedings of CEE 2019 : Advances in Resource-Saving Technologies and Materials in Civil and Environmental Engineering, Lecture Notes in Civil Engineering, 47, 428-435. http://doi.org/10.1007/978-3-030-27011-7_54
- Eurocode 3 (2006), Design of Steel Structures. Part 2: Steel Bridges, European Committee for Standardization; Brussels, Belgium.
- Fettahoglu, A. (2015), "Effect of a crossbeam on stresses revealed in orthotropic steel bridges", Steel Compos. Struct., 18(1), 149-163. http://doi.org/10.12989/scs.2015.18.1.149.
- Ibrahim Al Z., Buick D. and Luca S. (2019), "Nominal and local stress quantities to design aluminum-to-steel thin welded joints against fatigue", Int. J. Fatigue, 123, 279-295. https://doi.org/10.1016/j.ijfatigue.2019.02.018.
- Jiang, W., Chen, W., Woo, W., Tu, S.T., Zhang, X.C. and Em, V. (2018), "Effects of low-temperature transformation and transformation-induced plasticity on weld residual stresses: Numerical study and neutron diffraction measurement", Mater. Des., 147, 65-79. https://doi.org/10.1016/j.matdes.2018.03.032.
- Jin, Q., Jiang, W., Gu, W., Wang, J., Li, G., Pan, X. and Tu, S.T. (2021), "A primary plus secondary local PWHT method for mitigating weld residual stresses in pressure vessels", Int. J. Pressure Vessels Piping, 192, 104431. https://doi.org/10.1016/j.ijpvp.2021.104431.
- Jorg B. (2017), "Review and considerations on the fatigue assessment of welded joints using reference radii", Int. J. Fatigue, 101, 459-468, https://doi.org/10.1016/j.ijfatigue.2017.01.013.
- Jin, Q., Jiang, W., Gu, W., Wang, J., Li, G., Pan, X. and Tu, S. T. (2021), "A primary plus secondary local PWHT method for mitigating weld residual stresses in pressure vessels", Int. J. Pressure Vessels Piping, 192, 104431. https://doi.org/10.12989/scs.2018.28.3.319.
- Kainuma, S., Jeong, Y.S. and Ahn, J.H. (2015), "Stress distribution on the real corrosion surface of the orthotropic steel bridge deck", Steel Compos. Struct., 18(6), 1479-1492. https://doi.org/10.12989/scs.2015.18.6.1479.
- Kim, M.H. and Kang, S.W. (2008), "Testing and analysis of fatigue behavior in edge details: A comparative study using hot spot and structural stresses", Kyobu Geka Japan. J. Thoracic Surgery, 61(4), 2351-2363. http://dx.doi.org/10.1175/JAS3365.1
- Masahiro S. (2007), Report of Subcommittee on Investigation and Research of Thick Plate Melting, Research Report No. 55693, Civil Engineering Society Steel Structure Committee, Japan.
- Mei, J. and Dong, P. (2017), "An equivalent stress parameter for multiaxial fatigue evaluation of welded components including non-proportional loading effects", Int. J. Fatigue, 101(2), 297-311. https://doi.org/10.1016/j.ijfatigue.2017.01.006.
- Mei, J., Dong, P., Xing, S., Vasu, A., Ganamet, A., Chung, J. and Mehta, Y. (2021), "An overview and comparative assessment of approaches to multi-axial fatigue of welded components in codes and standards", Int. J. Fatigue, 146, 106144. https://doi.org/10.1016/j.ijfatigue.2021.106144.
- Nagy, W., Schotte, K., Van Bogaert, P. and De Backer, H. (2016), "Fatigue strength application of fracture mechanics to orthotropic steel decks", Adv. Struct. Eng., 19(11), 1696-1709. https://doi.org/10.1177/1369433216649383.
- O zler Karakas (2013), "Consideration of mean-stress effects on fatigue life of welded magnesium joints by the application of the Smith-Watson-Topper and reference radius concepts", Int. J. Fatigue, 49. https://doi.org/10.1016/j.ijfatigue.2012.11.007.
- O zler K. (2017), "Application of Neuber's effective stress method for the evaluation of the fatigue behavior of magnesium welds", Int. J. Fatigue, 101. https://doi.org/10.1016/j.ijfatigue.2016.10.023.
- Karakas, O., Baumgartner, J. and Susmel, L. (2020), "On the use of a fictitious notch radius equal to 0.3 mm to design against fatigue welded joints made of wrought magnesium alloy AZ31", Int. J. Fatigue, 139, 105747. https://doi.org/10.1016/j.ijfatigue.2020.105747.
- Karakas, O ., Zhang, G. and Sonsino, C.M. (2018), "Critical distance approach for the fatigue strength assessment of magnesium welded joints in contrast to Neuber's effective stress method", Int. J. Fatigue, 112, 21-35. https://doi.org/10.1016/j.ijfatigue.2018.03.004.
- Pei, X. and Dong, P. (2019), "An analytically formulated structural strain method for fatigue evaluation of welded components incorporating nonlinear hardening effects", Fatigue Fracture Eng. Mater. Struct., 42(1), 239-255. https://doi.org/10.1111/ffe.12900.
- Pei, X., Dong, P. and Kim, M.H. (2020), "A simplified structural strain method for low-cycle fatigue evaluation of girth-welded pipe components", Int. J. Fatigue, 139, 105732. https://doi.org/10.1016/j.ijfatigue.2020.105732.
- Pei, X., Dong, P. and Xing, S. (2019), "A structural strain parameter for a unified treatment of fatigue behaviors of welded components", Int. J. Fatigue, 124, 444-460. https://doi.org/10.1016/j.ijfatigue.2019.03.010.
- Pei, X., Ravi, S., Dong, P. and Li, X. (2022), "A multi-axial vibration fatigue evaluation procedure for welded structures in frequency domain", Mech. Syst. Signal Processing, 167, 108516. https://doi.org/10.1016/j.ymssp.2021.108516.
- Peng, W., Jiang, W., Sun, G., Yang, B., Shao, X. and Tu, S.T. (2022), "Biaxial residual stress measurement by indentation energy difference method: Theoretical and experimental study", Int. J. Pressure Vessels Piping, 195, 104573. https://doi.org/10.1016/j.ijpvp.2021.104573.
- Pfeil, M.S., Battista, R.C. and Mergulhao, A.J.R. (2005), "Stress concentration in steel bridge orthotropic decks", J. Construct. Steel Res., 61(8), 1172-1184. https://doi.org/10.1016/j.jcsr.2005.02.006.
- Shen, W., Yan, R., He, F. and Wang, S. (2018), "Multiaxial fatigue analysis of complex welded joints in notch stress approach", Eng. Fracture Mech., 204, 344-360. https://doi.org/10.1016/j.engfracmech.2018.10.035.
- Sim, H.B., Uang, C.M. and Sikorsky, C. (2009), "Effects of fabrication procedures on fatigue resistance of welded joints in steel orthotropic decks", J. Bridge Eng., 14(5), 366-373. https://doi.org/10.1061/(ASCE)1084-0702(2009)14:5(366).
- Sonsino C.M. (1995), "Multiaxial fatigue of welded joints under in-phase and out-of-phase local strains and stresses", Int. J. Fatigue, 17(1), 55-70. https://doi.org/10.1016/0142-1123(95)93051-3.
- Tong L. and Shen Z., (1997), "Fatigue tests of orthotropic steel bridge decks with open-shaped longitudinal ribs", China J. Highway Transport, 03, 62-68. http://doi.org/10.19721/j.cnki.1001-7372.1997.03.010.
- Wang, P., Pei, X., Dong, P. and Song, S. (2019), "Traction structural stress analysis of fatigue behaviors of rib-to-deck joints in orthotropic bridge deck", Int. J. Fatigue, 125, 11-22. https://doi.org/10.1016/j.ijfatigue.2019.03.038.
- Wang, P. and Zheng, K. (2004), "Fatigue characteristics of orthotropic steel decks of railway bridges", World Bridges, 1, 44-48. http://doi.org/10.3969/j.issn.1671-7767.2004.01.012.
- Wei, Z., Jin, H., Pei, X. and Wang, L. (2021), "A simplified approach to estimate the fatigue life of full-scale welded cast steel thin-walled tubular structures", Thin-Walled Struct., 160, 107348. https://doi.org/10.1016/j.tws.2020.107348.
- Wei Z, Pei X, Jin H (2021), "Evaluation of welded cast steel joint fatigue data using structural stress methods," J Constr Steel Res, 186, 106895. https://doi.org/10.1016/j.jcsr.2021.106895.
- WOLCHUK R (1990), "Lessons from weld cracks in orthotropic decks on 3 European bridges", J. Struct. Eng.-ASCE, 116(1), 75-84. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:1(75).
- Wouter Dennis C. and Philippe Van B. (2007), "Improvements to the analysis of floorbeams with additional web cutouts for orthotropic plated decks with closed continuous ribs", Steel Compos. Struct., 7(1), 1-18. https://doi.org/10.12989/scs.2007.7.1.001.
- Ya. S., Yamada, K. and Ishikawa, T. (2011), "Fatigue evaluation of rib-to deck welded joints of orthotropic steel bridge deck", J. Bridge Eng., 16(4), 492-499. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000181.
- Yang, H., Qian, H. and Wang, P. (2021), "Fatigue property analysis of U rib-to-crossbeam connections under heavy traffic vehicle load considering in-plane shear stress", Steel Compos. Struct., 38(3), 271-280. https://doi.org/10.1016/j.tafmec.2020.102889.
- Yang, H., Wang, P. and Qian, H. (2020), "Fatigue behavior of typical details of orthotropic steel bridges in multiaxial stress states using traction structural stress", Int. J. Fatigue, 141(12), 105862. https://doi.org/10.1016/j.ijfatigue.2020.105862.
- Yang, H., Wang, P. and Qian, H. (2022), "A Study of Fatigue Crack Propagation Paths at U-Rib Welds in Orthotropic Bridge Decks using a Phased-Array Imaging Technique", Theoretic. Appl. Fracture Mech., 119, 103310. https://doi.org/10.1016/j.tafmec.2022.103310.
- Yang, H., Wang, P. and Qian, H. (2022), "An experimental investigation into fatigue behaviors of single- and double-sided U rib welds in orthotropic bridge decks", Int. J. Fatigue, 159, 106827. https://doi.org/10.1016/j.ijfatigue.2022.106827.
- Yang, H., Wang, P. and Qian, H. (2021), "Fatigue property of U rib-crossbeam-deck connections in OBD under combined loading of bending and torsion", Theoretic. Appl. Fracture Mech., 112, 102889. http://dx.doi.org/10.12989/scs.2021.38.3.271.
- Ye, H., Xu, X., Qiang, S. and Hou, S. (2012), "Fatigue design parameters for orthotropic steel decks of single plane cable-stayed bridges", J. Southwest Jiaotong Univ. http://doi.org/10.3969/j.issn.0258-2724.2012.03.005.
- Zhou, W., Dong, P. and O zler, K. (2020), "Evaluation of magnesium weldment fatigue data using traction and notch stress methods", Int. J. Fatigue, 138, 105695. https://doi.org/10.1016/j.ijfatigue.2020.105695.