DOI QR코드

DOI QR Code

Design models for predicting shear resistance of studs in solid concrete slabs based on symbolic regression with genetic programming

  • Degtyarev, Vitaliy V. (New Millennium Building Systems) ;
  • Hicks, Stephen J. (School of Engineering, University of Warwick) ;
  • Hajjar, Jerome F. (Department of Civil and Environmental Engineering, Northeastern University)
  • 투고 : 2021.12.18
  • 심사 : 2022.03.10
  • 발행 : 2022.05.10

초록

Accurate design models for predicting the shear resistance of headed studs in solid concrete slabs are essential for obtaining economical and safe steel-concrete composite structures. In this study, symbolic regression with genetic programming (GPSR) was applied to experimental data to formulate new descriptive equations for predicting the shear resistance of studs in solid slabs using both normal and lightweight concrete. The obtained GPSR-based nominal resistance equations demonstrated good agreement with the test results. The equations indicate that the stud shear resistance is insensitive to the secant modulus of elasticity of concrete, which has been included in many international standards following the pioneering work of Ollgaard et al. In contrast, it increases when the stud height-to-diameter ratio increases, which is not reflected by the design models in the current international standards. The nominal resistance equations were subsequently refined for use in design from reliability analyses to ensure that the target reliability index required by the Eurocodes was achieved. Resistance factors for the developed equations were also determined following US design practice. The stud shear resistance predicted by the proposed models was compared with the predictions from 13 existing models. The accuracy of the developed models exceeds the accuracy of the existing equations. The proposed models produce predictions that can be used with confidence in design, while providing significantly higher stud resistances for certain combinations of variables than those computed with the existing equations given by many standards.

키워드

참고문헌

  1. ACI 301 (2016), Specifications for Structural Concrete. American Concrete Institute, Farmington Hills, MI, U.S.A.
  2. ACI 318 (2008), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, U.S.A.
  3. ACI 318 (2019), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, U.S.A.
  4. AISC 360 (1986), Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, U.S.A.
  5. AISC 360 (2005), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA.
  6. AISC 360 (2010) Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, U.S.A.
  7. AISC 360 (2016), Specification for Structural Steel Buildings. American Institute of Steel Construction, Chicago, IL, U.S.A.
  8. AISC SCM (2016), Steel Construction Manual, American Institute of Steel Construction, Chicago, IL, U.S.A.
  9. Ari, D. and Alagoz, B.B. (2021), "A review of genetic programming: Popular techniques, fundamental aspects, software tools and applications", Sakarya Univ. J. Sci., 25(2), 397-416. https://doi.org/10.16984/saufenbilder.793333.
  10. AS-2327.1 (2003), Composite Structures, Part 1: Simply Supported Beams, Standard Australia International, Sydney, Australia.
  11. AS/NZS 2327 (2017), Australian/New Zealand Standard. Composite Structures - Composite Steel-Concrete Construction in Buildings, Standards Australia/Standards New Zealand, Sydney, Australia/Wellington, New Zealand.
  12. AS/NZS 5100.6 (2017), Australian/New Zealand Standard. Bridge design. Part 6: Steel and Composite Construction, Standards Australia/Standards New Zealand, Sydney, Australia/Wellington, New Zealand.
  13. Aval, S.B., Ketabdari, H. and Gharebaghi, S.A. (2017), "Estimating shear strength of short rectangular reinforced concrete columns using nonlinear regression and gene expression programming", Structures, 12, 13-23 https://doi.org/10.1016/j.istruc.2017.07.002.
  14. Bomarito, G., Townsend, T., Stewart, K., Esham, K., Emery, J. and Hochhalter, J. (2021), "Development of interpretable, data-driven plasticity models with symbolic regression", Comput. Struct., 252, 106557. https://doi.org/10.1016/j.compstruc.2021.106557.
  15. Bonilla, J., Bezerra, L.M., Mirambell, E. and Massicotte, B. (2018), "Review of stud shear resistance prediction in steel-concrete composite beams", Steel Compos. Struct., 27(3), 355-370. https://doi.org/10.12989/scs.2018.27.3.355.
  16. Bonilla, J., Mirambell, E., Larrua, R. and Recarey, C. (2012), "Behavior and strength of welded stud shear connectors in composite beam", Rev. Fac. Ing. Univ. Antioquia, 63, 93-104.
  17. Chaabene, W.B. and Nehdi, M.L. (2021), "Genetic programming based symbolic regression for shear capacity prediction of SFRC beams", Construct. Build. Mater., 280, 122523 https://doi.org/10.1016/j.conbuildmat.2021.122523.
  18. D'Aniello, M., Guneyisi, E.M., Landolfo, R. and Mermerdas, K. (2014), "Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams", Thin-Walled Struct., 77, 141-152. https://doi.org/10.1016/j.tws.2013.09.015.
  19. D'Aniello, M., Guneyisi, E.M., Landolfo, R. and Mermerdas, K. (2015), "Predictive models of the flexural overstrength factor for steel thin-walled circular hollow section beams", Thin-Walled Struct., 94, 67-78. https://doi.org/10.1016/j.tws.2015.03.020.
  20. Doinghaus, P. (2001), "Zum Zusammenwirken hochfester Baustoffe in Verbundtragern", Schriftenreihe des IMB, Dissertation, Institut fur Massivbau, RWTH Aachen.
  21. EN 1990:2002+A1 (2005), Eurocode: Basis of Structural Design, European Committee for Standardization, Brussels, Belgium.
  22. EN 1992-1-2 (2004), Eurocode 2: Design of Concrete Structures - Part 1-2: General Rules - Structural Fire Design. European Committee for Standardization, Brussels, Belgium.
  23. EN 1994-1-1 (2004), Eurocode 4: Design of Composite Steel and Concrete Structures - Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization, Brussels, Belgium.
  24. EN 1994-2 (2005), Eurocode 4: Design of Composite Steel and Concrete Structures - Part 2: General Rules and Rules for Bridges, European Committee for Standardization, Brussels, Belgium.
  25. EN ISO 13918 (2017), Welding - Studs and Ceramic Ferrules for Arc stud Welding, European Committee for Standardization, Brussels, Belgium.
  26. Gandomi, A.H., Tabatabaei, S.M., Moradian, M.H., Radfar, A., and Alavi, A.H. (2011), "A new prediction model for the load capacity of castellated steel beams", J. Construct. Steel Res., 67(7), 1096-1105. https://doi.org/10.1016/j.jcsr.2011.01.014.
  27. GB50017 (2003), Code for Design of Steel Structures. Ministry of Housing and Urban-rural Development of the Peoples' Republic of China, Beijing, China.
  28. Golafshani, E., Rahai, A. and Sebt, M. (2015), "Artificial neural network and genetic programming for predicting the bond strength of GFRP bars in concrete", Mater. Struct., 48(5), 1581-1602. https://doi.org/10.1617/s11527-014-0256-0.
  29. Gondia, A., Ezzeldin, M. and El-Dakhakhni, W. (2020), "Mechanics-guided genetic programming expression for shear-strength prediction of squat reinforced concrete walls with boundary elements", J. Struct. Eng. Amer. Soc. Civil Eng., 146(11), 04020223. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002734.
  30. Graciano, C., Kurtoglu, A.E. and Casanova, E. (2021), "Machine learning approach for predicting the patch load resistance of slender austenitic stainless steel girders", Structures, 30, 198-205. https://doi.org/10.1016/j.istruc.2021.01.012.
  31. Guneyisi, E.M. and Nour, A.I. (2019), "Axial compression capacity of circular CFST columns transversely strengthened by FRP", Eng. Struct., 191, 417-431 https://doi.org/10.1016/j.engstruct.2019.04.056.
  32. Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas, K. (2013), "A novel formulation of the flexural overstrength factor for steel beams", J. Construct. Steel Res., 90, 60-71. https://doi.org/10.1016/j.jcsr.2013.07.022.
  33. Guneyisi, E., Gesoglu, M. and Ipek, S. (2013), "Effect of steel fiber addition and aspect ratio on bond strength of cold-bonded fly ash lightweight aggregate concretes", Construct. Build. Mater., 47, 358-365. http://dx.doi.org/10.1016/j.conbuildmat.2013.05.059.
  34. Hanswille, G. and Porsch, M. (2007), "Zur festlegung der tragfahigkeit von kopfbolzendubeln in vollbetonplatten in DIN 18000-5 und EN 1994-1-1." Schriftenreihe des Instituts fur konstruktiven Ingenieurbau, Ruhr-Universitat Bochum, Festschrift Prof. Kindmann, Bochum, 6.
  35. Hernandez, I.D., Vaz, M.A., Cyrino, J.C. and Liang, D.A. (2018), "Compressive capacity of perforated tubular members using symbolic regression of DoE-FEM simulations", Thin-Walled Struct., 131, 440-450. https://doi.org/10.1016/j.tws.2018.07.033.
  36. Hicks, S.J. (2017), "Design shear resistance of headed studs embedded in solid slabs and encasements", J. Construct. Steel Res., 139, 339-352. https://doi.org/10.1016/j.jcsr.2017.09.018.
  37. Hicks, S.J. (2021a), "Push test database of headed stud connectors embedded in solid concrete slabs", Mendeley Data, V2. http://doi.org/10.17632/rfrw3z4hs7.2.
  38. Hicks, S.J. (2021b), "Database of push tests on headed stud shear connectors embedded in solid slabs using lightweight concrete", Mendeley Data, V1, http://doi.org/10.17632/xtg3w85hdr.1
  39. Ipek, S. and Guneyisi, E.M. (2022), "Application of Eurocode 4 design provisions and development of new predictive models for eccentrically loaded CFST elliptical columns", J. Build. Eng., 48(2), 103945. https://doi.org/10.1016/j.jobe.2021.103945.
  40. Ipek, S. and Mermerdas, K. (2020), "Experimental & computational study on fly ash and kaolin based synthetic lightweight aggregate", Comput. Concrete, 26(4), 327-342. https://doi.org/10.12989/cac.2020.26.4.327.
  41. Jafari, S. and Mahini, S.S. (2017), "Lightweight concrete design using gene expression programing", Construct. Build. Mater., 139, 93-100. https://doi.org/10.1016/j.conbuildmat.2017.01.120.
  42. Jeon, J.S., Shafieezadeh, A. and DesRoches, R. (2014), "Statistical models for shear strength of RC beam-column joints using machine-learning techniques", Earthq. Eng. Struct. Dyn., 43(14), 2075-2095. https://doi.org/10.1002/eqe.2437.
  43. Jeong, H., Choi, S.H., Han, S.J., Kim, J.H., Lee, S.H. and Kim, K. S. (2021a), "Explainable models to estimate the effective compressive strength of slab-column joints using genetic programming", Struct. Concrete., https://doi.org/10.1002/suco.202100149.
  44. Jeong, H., Han, S.J., Choi, S.H., Kim, J.H. and Kim, K.S. (2021b), "Genetic programming approach and data generation for transfer lengths in pretensioned concrete members", Eng. Struct., 231, 111747. https://doi.org/10.1016/j.engstruct.2020.111747.
  45. JSCE (2007), Standard Specifications for Steel and Composite Structures: I General Provision, II Structural Planning, III Design, Japan Society of Civil Engineers, Tokyo, Japan.
  46. Konrad, M., Eggert, F., Kuhlmann, U. and Schorr, J. (2020), "New approach for the design shear resistance of headed studs in profiled steel sheeting with ribs transverse to supporting beam", Steel Construct., 13(4), 252-263. https://doi.org/10.1002/stco.202000018.
  47. Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT press.
  48. Lim, J.C., Karakus, M. and Ozbakkaloglu, T. (2016), "Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming", Comput. Struct., 162, 28-37. https://doi.org/10.1016/j.compstruc.2015.09.005.
  49. Mansouri, I., Guneyisi, E.M. and Mosalam, K.M. (2021), "Improved shear strength model for exterior reinforced concrete beam-column joints using gene expression programming", Eng. Struct., 228, 111563. https://doi.org/10.1016/j.engstruct.2020.111563.
  50. Momeni, M., Hadianfard, M.A., Bedon, C. and Baghlani, A. (2020), "Damage evaluation of H-section steel columns under impulsive blast loads via gene expression programming", Eng. Struct., 219, 110909. https://doi.org/10.1016/j.engstruct.2020.110909.
  51. Mujagic, J.R.U. and Easterling, W.S. (2009), "Reliability assessment of composite beams", J. Construct. Steel Res., 65(12), 2111-2128. https://doi.org/10.1016/j.jcsr.2009.07.007.
  52. Mujagic, J.R.U., Easterling, W.S. and Murray, T. (2007), "Drilled standoff screws for shear connection in light composite steel-concrete trusses", J. Construct. Steel Res., 63(10), 1404-1414. https://doi.org/10.1016/j.jcsr.2006.12.008.
  53. Naser, M. (2019), "Properties and material models for common construction materials at elevated temperatures", Construct. Build. Mater., 215, 192-206. https://doi.org/10.1016/j.conbuildmat.2019.04.182.
  54. Naser, M. (2020), "Machine learning assessment of fiber-reinforced polymer-strengthened and reinforced concrete members", ACI Struct. J., 117(6), 237-251.
  55. Naser, M. (2021), "An engineer's guide to eXplainable Artificial Intelligence and Interpretable Machine Learning: Navigating causality, forced goodness, and the false perception of inference", Automat. Construct., 129, 103821. https://doi.org/10.1016/j.autcon.2021.103821.
  56. Naser, M. and Salehi, H. (2020), "Machine learning-driven assessment of fire-induced concrete spalling of columns", ACI Mater. J., 117(6), 7-16.
  57. Naser, M., Thai, S. and Thai, H.T. (2021), "Evaluating structural response of concrete-filled steel tubular columns through machine learning", J. Build. Eng., 34, 101888. https://doi.org/10.1016/j.jobe.2020.101888.
  58. Nour, A.I. and Guneyisi, E.M. (2019), "Prediction model on compressive strength of recycled aggregate concrete filled steel tube columns", Compos. Part B: Eng., 173, 106938. https://doi.org/10.1016/j.compositesb.2019.106938.
  59. Oehlers, D. and Johnson, R. (1987), "The strength of stud shear connections in composite beams", Struct. Eng., 65(2), 44-48.
  60. Ollgaard, J.G., Slutter, R.G. and Fisher, J.W. (1971), "Shear strength of stud connectors in lightweight and normal-weight concrete", AISC Eng. J., 8(2), 55-64
  61. Ozbay, E., Gesoglu, M. and Guneyisi, E. (2008), "Empirical modeling of fresh and hardened properties of self-compacting concretes by genetic programming", Construct. Build. Mater., 22(8), 1831-1840. https://doi.org/10.1016/j.conbuildmat.2007.04.021.
  62. Ozcan, F. (2012), "Gene expression programming based formulations for splitting tensile strength of concrete", Construct. Build. Mater., 26(1), 404-410. https://doi.org/10.1016/j.conbuildmat.2011.06.039.
  63. Pallares, L. and Hajjar, J.F. (2010), "Headed steel stud anchors in composite structures, Part I: Shear", J. Construct. Steel Res., 66(2), 198-212. https://doi.org/10.1016/j.jcsr.2009.08.009.
  64. Pavlovic, M., Markovic, Z., Veljkovic, M. and Budevac, D. (2013), "Bolted shear connectors vs. headed studs behaviour in push-out tests", J. Construct. Steel Res., 88, 134-149. https://doi.org/10.1016/j.jcsr.2013.05.003.
  65. PCI (2004), PCI Design Handbook: Precast and Prestressed Concrete, Precast/Prestressed Concrete Institute, Chicago, IL, USA.
  66. Perez, J.L., Cladera, A., Rabunal, J.R. and Abella, F.M. (2010), "Optimal adjustment of EC-2 shear formulation for concrete elements without web reinforcement using Genetic Programming", Eng. Struct., 32(11), 3452-3466. https://doi.org/10.1016/j.engstruct.2010.07.006.
  67. Ravindra, M.K. and Galambos, T.V. (1978), "Load and resistance factor design for steel", J. Struct. Div., 104(9), 1337-1353. https://doi.org/10.1061/JSDEAG.0004981.
  68. Saridemir, M. (2010), "Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash", Construct. Build. Mater., 24(10), 1911-1919. https://doi.org/10.1016/j.conbuildmat.2010.04.011.
  69. Shahin, M.A. and Elchalakani, M.F. (2014), "A new model based on evolutionary computing for predicting ultimate pure bending of steel circular tubes", J. Construct. Steel Res., 94, 84-90. https://doi.org/10.1016/j.jcsr.2013.11.011.
  70. Shahnewaz, M. and Alam, M.S. (2020), "Genetic algorithm for predicting shear strength of steel fiber reinforced concrete beam with parameter identification and sensitivity analysis", J. Build. Eng., 29, 101205. https://doi.org/10.1016/j.jobe.2020.101205.
  71. Shariati, A., RamliSulong, N.H., Shariati, M. and Shariati, M. (2012), "Various types of shear connectors in composite structures: A review", Int. J. Phys. Sci., 7(22), 2876-2890. https://doi.org/10.5897/IJPSx11.004.
  72. Solhmirzaei, R., Salehi, H., Kodur, V. and Naser, M. (2020), "Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams", Eng. Struct., 224, 111221. https://doi.org/10.1016/j.engstruct.2020.111221.
  73. Stephens, T. (2016), GPLearn, https://gplearn.readthedocs.io/en/stable/index.html.
  74. Velay-Lizancos, M., Perez-Ordonez, J.L., Martinez-Lage, I. and Vazquez-Burgo, P. (2017), "Analytical and genetic programming model of compressive strength of eco concretes by NDT according to curing temperature", Construct. Build. Mater., 144, 195-206. https://doi.org/10.1016/j.conbuildmat.2017.03.123.
  75. Wang, Y., Wagner, N. and Rondinelli, J.M. (2019), "Symbolic regression in materials science", MRS Communications, 9(3), 793-805. https://doi.org/10.1557/mrc.2019.85.
  76. Xue, W., Ding, M., Wang, H. and Luo, Z. (2008), "Static behavior and theoretical model of stud shear connectors", J. Bridge Eng., 13(6), 623-634. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:6(623).
  77. Zhang, Q., Barri, K., Jiao, P., Salehi, H. and Alavi, A.H. (2021), "Genetic programming in civil engineering: advent, applications and future trends", Artif. Intell. Rev, 54(3), 1863-1885. https://doi.org/10.1007/s10462-020-09894-7.