References
- ACI 301 (2016), Specifications for Structural Concrete. American Concrete Institute, Farmington Hills, MI, U.S.A.
- ACI 318 (2008), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, U.S.A.
- ACI 318 (2019), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, U.S.A.
- AISC 360 (1986), Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, U.S.A.
- AISC 360 (2005), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA.
- AISC 360 (2010) Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, U.S.A.
- AISC 360 (2016), Specification for Structural Steel Buildings. American Institute of Steel Construction, Chicago, IL, U.S.A.
- AISC SCM (2016), Steel Construction Manual, American Institute of Steel Construction, Chicago, IL, U.S.A.
- Ari, D. and Alagoz, B.B. (2021), "A review of genetic programming: Popular techniques, fundamental aspects, software tools and applications", Sakarya Univ. J. Sci., 25(2), 397-416. https://doi.org/10.16984/saufenbilder.793333.
- AS-2327.1 (2003), Composite Structures, Part 1: Simply Supported Beams, Standard Australia International, Sydney, Australia.
- AS/NZS 2327 (2017), Australian/New Zealand Standard. Composite Structures - Composite Steel-Concrete Construction in Buildings, Standards Australia/Standards New Zealand, Sydney, Australia/Wellington, New Zealand.
- AS/NZS 5100.6 (2017), Australian/New Zealand Standard. Bridge design. Part 6: Steel and Composite Construction, Standards Australia/Standards New Zealand, Sydney, Australia/Wellington, New Zealand.
- Aval, S.B., Ketabdari, H. and Gharebaghi, S.A. (2017), "Estimating shear strength of short rectangular reinforced concrete columns using nonlinear regression and gene expression programming", Structures, 12, 13-23 https://doi.org/10.1016/j.istruc.2017.07.002.
- Bomarito, G., Townsend, T., Stewart, K., Esham, K., Emery, J. and Hochhalter, J. (2021), "Development of interpretable, data-driven plasticity models with symbolic regression", Comput. Struct., 252, 106557. https://doi.org/10.1016/j.compstruc.2021.106557.
- Bonilla, J., Bezerra, L.M., Mirambell, E. and Massicotte, B. (2018), "Review of stud shear resistance prediction in steel-concrete composite beams", Steel Compos. Struct., 27(3), 355-370. https://doi.org/10.12989/scs.2018.27.3.355.
- Bonilla, J., Mirambell, E., Larrua, R. and Recarey, C. (2012), "Behavior and strength of welded stud shear connectors in composite beam", Rev. Fac. Ing. Univ. Antioquia, 63, 93-104.
- Chaabene, W.B. and Nehdi, M.L. (2021), "Genetic programming based symbolic regression for shear capacity prediction of SFRC beams", Construct. Build. Mater., 280, 122523 https://doi.org/10.1016/j.conbuildmat.2021.122523.
- D'Aniello, M., Guneyisi, E.M., Landolfo, R. and Mermerdas, K. (2014), "Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams", Thin-Walled Struct., 77, 141-152. https://doi.org/10.1016/j.tws.2013.09.015.
- D'Aniello, M., Guneyisi, E.M., Landolfo, R. and Mermerdas, K. (2015), "Predictive models of the flexural overstrength factor for steel thin-walled circular hollow section beams", Thin-Walled Struct., 94, 67-78. https://doi.org/10.1016/j.tws.2015.03.020.
- Doinghaus, P. (2001), "Zum Zusammenwirken hochfester Baustoffe in Verbundtragern", Schriftenreihe des IMB, Dissertation, Institut fur Massivbau, RWTH Aachen.
- EN 1990:2002+A1 (2005), Eurocode: Basis of Structural Design, European Committee for Standardization, Brussels, Belgium.
- EN 1992-1-2 (2004), Eurocode 2: Design of Concrete Structures - Part 1-2: General Rules - Structural Fire Design. European Committee for Standardization, Brussels, Belgium.
- EN 1994-1-1 (2004), Eurocode 4: Design of Composite Steel and Concrete Structures - Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization, Brussels, Belgium.
- EN 1994-2 (2005), Eurocode 4: Design of Composite Steel and Concrete Structures - Part 2: General Rules and Rules for Bridges, European Committee for Standardization, Brussels, Belgium.
- EN ISO 13918 (2017), Welding - Studs and Ceramic Ferrules for Arc stud Welding, European Committee for Standardization, Brussels, Belgium.
- Gandomi, A.H., Tabatabaei, S.M., Moradian, M.H., Radfar, A., and Alavi, A.H. (2011), "A new prediction model for the load capacity of castellated steel beams", J. Construct. Steel Res., 67(7), 1096-1105. https://doi.org/10.1016/j.jcsr.2011.01.014.
- GB50017 (2003), Code for Design of Steel Structures. Ministry of Housing and Urban-rural Development of the Peoples' Republic of China, Beijing, China.
- Golafshani, E., Rahai, A. and Sebt, M. (2015), "Artificial neural network and genetic programming for predicting the bond strength of GFRP bars in concrete", Mater. Struct., 48(5), 1581-1602. https://doi.org/10.1617/s11527-014-0256-0.
- Gondia, A., Ezzeldin, M. and El-Dakhakhni, W. (2020), "Mechanics-guided genetic programming expression for shear-strength prediction of squat reinforced concrete walls with boundary elements", J. Struct. Eng. Amer. Soc. Civil Eng., 146(11), 04020223. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002734.
- Graciano, C., Kurtoglu, A.E. and Casanova, E. (2021), "Machine learning approach for predicting the patch load resistance of slender austenitic stainless steel girders", Structures, 30, 198-205. https://doi.org/10.1016/j.istruc.2021.01.012.
- Guneyisi, E.M. and Nour, A.I. (2019), "Axial compression capacity of circular CFST columns transversely strengthened by FRP", Eng. Struct., 191, 417-431 https://doi.org/10.1016/j.engstruct.2019.04.056.
- Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas, K. (2013), "A novel formulation of the flexural overstrength factor for steel beams", J. Construct. Steel Res., 90, 60-71. https://doi.org/10.1016/j.jcsr.2013.07.022.
- Guneyisi, E., Gesoglu, M. and Ipek, S. (2013), "Effect of steel fiber addition and aspect ratio on bond strength of cold-bonded fly ash lightweight aggregate concretes", Construct. Build. Mater., 47, 358-365. http://dx.doi.org/10.1016/j.conbuildmat.2013.05.059.
- Hanswille, G. and Porsch, M. (2007), "Zur festlegung der tragfahigkeit von kopfbolzendubeln in vollbetonplatten in DIN 18000-5 und EN 1994-1-1." Schriftenreihe des Instituts fur konstruktiven Ingenieurbau, Ruhr-Universitat Bochum, Festschrift Prof. Kindmann, Bochum, 6.
- Hernandez, I.D., Vaz, M.A., Cyrino, J.C. and Liang, D.A. (2018), "Compressive capacity of perforated tubular members using symbolic regression of DoE-FEM simulations", Thin-Walled Struct., 131, 440-450. https://doi.org/10.1016/j.tws.2018.07.033.
- Hicks, S.J. (2017), "Design shear resistance of headed studs embedded in solid slabs and encasements", J. Construct. Steel Res., 139, 339-352. https://doi.org/10.1016/j.jcsr.2017.09.018.
- Hicks, S.J. (2021a), "Push test database of headed stud connectors embedded in solid concrete slabs", Mendeley Data, V2. http://doi.org/10.17632/rfrw3z4hs7.2.
- Hicks, S.J. (2021b), "Database of push tests on headed stud shear connectors embedded in solid slabs using lightweight concrete", Mendeley Data, V1, http://doi.org/10.17632/xtg3w85hdr.1
- Ipek, S. and Guneyisi, E.M. (2022), "Application of Eurocode 4 design provisions and development of new predictive models for eccentrically loaded CFST elliptical columns", J. Build. Eng., 48(2), 103945. https://doi.org/10.1016/j.jobe.2021.103945.
- Ipek, S. and Mermerdas, K. (2020), "Experimental & computational study on fly ash and kaolin based synthetic lightweight aggregate", Comput. Concrete, 26(4), 327-342. https://doi.org/10.12989/cac.2020.26.4.327.
- Jafari, S. and Mahini, S.S. (2017), "Lightweight concrete design using gene expression programing", Construct. Build. Mater., 139, 93-100. https://doi.org/10.1016/j.conbuildmat.2017.01.120.
- Jeon, J.S., Shafieezadeh, A. and DesRoches, R. (2014), "Statistical models for shear strength of RC beam-column joints using machine-learning techniques", Earthq. Eng. Struct. Dyn., 43(14), 2075-2095. https://doi.org/10.1002/eqe.2437.
- Jeong, H., Choi, S.H., Han, S.J., Kim, J.H., Lee, S.H. and Kim, K. S. (2021a), "Explainable models to estimate the effective compressive strength of slab-column joints using genetic programming", Struct. Concrete., https://doi.org/10.1002/suco.202100149.
- Jeong, H., Han, S.J., Choi, S.H., Kim, J.H. and Kim, K.S. (2021b), "Genetic programming approach and data generation for transfer lengths in pretensioned concrete members", Eng. Struct., 231, 111747. https://doi.org/10.1016/j.engstruct.2020.111747.
- JSCE (2007), Standard Specifications for Steel and Composite Structures: I General Provision, II Structural Planning, III Design, Japan Society of Civil Engineers, Tokyo, Japan.
- Konrad, M., Eggert, F., Kuhlmann, U. and Schorr, J. (2020), "New approach for the design shear resistance of headed studs in profiled steel sheeting with ribs transverse to supporting beam", Steel Construct., 13(4), 252-263. https://doi.org/10.1002/stco.202000018.
- Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT press.
- Lim, J.C., Karakus, M. and Ozbakkaloglu, T. (2016), "Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming", Comput. Struct., 162, 28-37. https://doi.org/10.1016/j.compstruc.2015.09.005.
- Mansouri, I., Guneyisi, E.M. and Mosalam, K.M. (2021), "Improved shear strength model for exterior reinforced concrete beam-column joints using gene expression programming", Eng. Struct., 228, 111563. https://doi.org/10.1016/j.engstruct.2020.111563.
- Momeni, M., Hadianfard, M.A., Bedon, C. and Baghlani, A. (2020), "Damage evaluation of H-section steel columns under impulsive blast loads via gene expression programming", Eng. Struct., 219, 110909. https://doi.org/10.1016/j.engstruct.2020.110909.
- Mujagic, J.R.U. and Easterling, W.S. (2009), "Reliability assessment of composite beams", J. Construct. Steel Res., 65(12), 2111-2128. https://doi.org/10.1016/j.jcsr.2009.07.007.
- Mujagic, J.R.U., Easterling, W.S. and Murray, T. (2007), "Drilled standoff screws for shear connection in light composite steel-concrete trusses", J. Construct. Steel Res., 63(10), 1404-1414. https://doi.org/10.1016/j.jcsr.2006.12.008.
- Naser, M. (2019), "Properties and material models for common construction materials at elevated temperatures", Construct. Build. Mater., 215, 192-206. https://doi.org/10.1016/j.conbuildmat.2019.04.182.
- Naser, M. (2020), "Machine learning assessment of fiber-reinforced polymer-strengthened and reinforced concrete members", ACI Struct. J., 117(6), 237-251.
- Naser, M. (2021), "An engineer's guide to eXplainable Artificial Intelligence and Interpretable Machine Learning: Navigating causality, forced goodness, and the false perception of inference", Automat. Construct., 129, 103821. https://doi.org/10.1016/j.autcon.2021.103821.
- Naser, M. and Salehi, H. (2020), "Machine learning-driven assessment of fire-induced concrete spalling of columns", ACI Mater. J., 117(6), 7-16.
- Naser, M., Thai, S. and Thai, H.T. (2021), "Evaluating structural response of concrete-filled steel tubular columns through machine learning", J. Build. Eng., 34, 101888. https://doi.org/10.1016/j.jobe.2020.101888.
- Nour, A.I. and Guneyisi, E.M. (2019), "Prediction model on compressive strength of recycled aggregate concrete filled steel tube columns", Compos. Part B: Eng., 173, 106938. https://doi.org/10.1016/j.compositesb.2019.106938.
- Oehlers, D. and Johnson, R. (1987), "The strength of stud shear connections in composite beams", Struct. Eng., 65(2), 44-48.
- Ollgaard, J.G., Slutter, R.G. and Fisher, J.W. (1971), "Shear strength of stud connectors in lightweight and normal-weight concrete", AISC Eng. J., 8(2), 55-64
- Ozbay, E., Gesoglu, M. and Guneyisi, E. (2008), "Empirical modeling of fresh and hardened properties of self-compacting concretes by genetic programming", Construct. Build. Mater., 22(8), 1831-1840. https://doi.org/10.1016/j.conbuildmat.2007.04.021.
- Ozcan, F. (2012), "Gene expression programming based formulations for splitting tensile strength of concrete", Construct. Build. Mater., 26(1), 404-410. https://doi.org/10.1016/j.conbuildmat.2011.06.039.
- Pallares, L. and Hajjar, J.F. (2010), "Headed steel stud anchors in composite structures, Part I: Shear", J. Construct. Steel Res., 66(2), 198-212. https://doi.org/10.1016/j.jcsr.2009.08.009.
- Pavlovic, M., Markovic, Z., Veljkovic, M. and Budevac, D. (2013), "Bolted shear connectors vs. headed studs behaviour in push-out tests", J. Construct. Steel Res., 88, 134-149. https://doi.org/10.1016/j.jcsr.2013.05.003.
- PCI (2004), PCI Design Handbook: Precast and Prestressed Concrete, Precast/Prestressed Concrete Institute, Chicago, IL, USA.
- Perez, J.L., Cladera, A., Rabunal, J.R. and Abella, F.M. (2010), "Optimal adjustment of EC-2 shear formulation for concrete elements without web reinforcement using Genetic Programming", Eng. Struct., 32(11), 3452-3466. https://doi.org/10.1016/j.engstruct.2010.07.006.
- Ravindra, M.K. and Galambos, T.V. (1978), "Load and resistance factor design for steel", J. Struct. Div., 104(9), 1337-1353. https://doi.org/10.1061/JSDEAG.0004981.
- Saridemir, M. (2010), "Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash", Construct. Build. Mater., 24(10), 1911-1919. https://doi.org/10.1016/j.conbuildmat.2010.04.011.
- Shahin, M.A. and Elchalakani, M.F. (2014), "A new model based on evolutionary computing for predicting ultimate pure bending of steel circular tubes", J. Construct. Steel Res., 94, 84-90. https://doi.org/10.1016/j.jcsr.2013.11.011.
- Shahnewaz, M. and Alam, M.S. (2020), "Genetic algorithm for predicting shear strength of steel fiber reinforced concrete beam with parameter identification and sensitivity analysis", J. Build. Eng., 29, 101205. https://doi.org/10.1016/j.jobe.2020.101205.
- Shariati, A., RamliSulong, N.H., Shariati, M. and Shariati, M. (2012), "Various types of shear connectors in composite structures: A review", Int. J. Phys. Sci., 7(22), 2876-2890. https://doi.org/10.5897/IJPSx11.004.
- Solhmirzaei, R., Salehi, H., Kodur, V. and Naser, M. (2020), "Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams", Eng. Struct., 224, 111221. https://doi.org/10.1016/j.engstruct.2020.111221.
- Stephens, T. (2016), GPLearn, https://gplearn.readthedocs.io/en/stable/index.html.
- Velay-Lizancos, M., Perez-Ordonez, J.L., Martinez-Lage, I. and Vazquez-Burgo, P. (2017), "Analytical and genetic programming model of compressive strength of eco concretes by NDT according to curing temperature", Construct. Build. Mater., 144, 195-206. https://doi.org/10.1016/j.conbuildmat.2017.03.123.
- Wang, Y., Wagner, N. and Rondinelli, J.M. (2019), "Symbolic regression in materials science", MRS Communications, 9(3), 793-805. https://doi.org/10.1557/mrc.2019.85.
- Xue, W., Ding, M., Wang, H. and Luo, Z. (2008), "Static behavior and theoretical model of stud shear connectors", J. Bridge Eng., 13(6), 623-634. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:6(623).
- Zhang, Q., Barri, K., Jiao, P., Salehi, H. and Alavi, A.H. (2021), "Genetic programming in civil engineering: advent, applications and future trends", Artif. Intell. Rev, 54(3), 1863-1885. https://doi.org/10.1007/s10462-020-09894-7.