References
- Afshan, S., Rossi, B. and Gardner, L. (2013), "Strength enhancements in cold-formed structural sections - Part I: Material testing", J. Construct. Steel Res.. 83, 177-188. https://doi.org/10.1016/j.jcsr.2012.12.008.
- Allen, D.E., Onysko, D.M. and Murray, T.M. (1999), Minimising Floor Vibration, Applied Technology Council, Redwood City, CA, USA.
- AS 3623 (1993), Domestic Metal Framing (Reconfirmed in 2018), Standards Australia; NSW, Australia.
- Ataei, A., Bradford, M.A. and Valipour, H.R. (2016), "Finite element analysis of HSS semi-rigid composite joints with precast concrete slabs and demountable bolted shear connectors', Finite Elements Anal. Des., 122, 16-38. https://doi.org/10.1016/j.finel.2016.08.003.
- Bachmann, H. (1987), Vibrations in Structures, Induced by Man and Machines, International Association for Bridge and Structural Engineering, Zurich, Switzerland.
- Bachmann, H., Ammann, W.J., Deischl, F., Eisenmann, J., Floegl, I., Hirsch, G.H., Klein, G.K., Lande, G.J., Mahrenholtz, O., Natke, H.G., Nussbaumer, H., Pretlove, A.J., Rainer, J.H., Saemann, E.U. and Steinbeisser, L. (1995), Vibration Problems in Structures, Birkhauser Basel, Basel.
- Bai, X., Lee, A.W.C., Thompson, L.L. and Rosowsky, D.V. (1999), "Finite element analysis of Moso bamboo-reinforced southern pine OSB composite beams", Wood Fiber Science, 31(4), 403-415.
- Cao, L., Li, J., Zheng, X. and Chen, Y.F. (2020), "Vibration behavior of large span composite steel bar truss-reinforced concrete floor due to human activity", Steel Compos. Struct., 37(4), 391-404. https://doi.org//10.12989/scs.2020.37.4.391.
- Cao, L., Tan, Y. and Li, J. (2021), "Experimental studies on vibration serviceability of composite steel-bar truss slab with steel girder under human activities", Steel Compos. Struct., 40(5), 663-678. https://doi.org//10.12989/scs.2021.40.5.663.
- Casagrande, D., Giongo, I., Pederzolli, F., Franciosi, A. and Piazza, M. (2018), "Analytical, numerical and experimental assessment of vibration performance in timber floors", Eng. Structures. 168(July 2017), 748-758. https://doi.org/10.1016/j.engstruct.2018.05.020.
- Chen, G. and He, B. (2017), "Stress-strain constitutive relation of OSB under axial loading: An experimental investigation", BioResources. 12(3), 6142-6156. https://doi.org/10.15376/biores.12.3.6142-6156.
- Chiniforush, A., Makki Alamdari, M., Dackermann, U., Valipour, H.R. and Akbarnezhad, A. (2019), "Vibration behaviour of steel-timber composite floors, part (1): Experimental & numerical investigation", J. Construct. Steel Res., 161, 244-257. https://doi.org/10.1016/j.jcsr.2019.07.007.
- Dar, M.A., Subramanian, N., Dar, A.R., Majid, M., Haseeb, M. and Tahoor, M. (2019), "Structural efficiency of various strengthening schemes for cold-formed steel beams: Effect of global imperfections", Steel Compos. Struct., 30(4), 393-403. https://doi.org/10.12989/scs.2019.30.4.393.
- Dodoo, A., Gustavsson, L. and Sathre, R. (2014), "Lifecycle carbon implications of conventional and low-energy multistorey timber building systems", Energy Build., 82, 194-210. https://doi.org/10.1016/j.enbuild.2014.06.034.
- Ebrahimpour, A. and Sack, RL (1992), "Design Live Loads for Coherent Crowd Harmonic Movements", J. Struct. Eng., 118(4), 1121-1136. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:4(1121).
- EN 1995-1-1 (2004), Eurocode 5: Design of timber structures-Part 1-1: General-Common rules and rules for buildings, European Committee for Standardization; Brussels, Belgium.
- Far, H. (2020), "Flexural behavior of cold-formed steel-timber composite flooring systems", J. Struct. Eng. (United States). 146(5), 1-6. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002600.
- Far, H., Saleh, A. and Firouzianhaji, A. (2017), "A simplified method to determine shear stiffness of thin walled cold formed steel storage rack frames", J. Construct. Steel Res., 138, 799-805. https://doi.org/10.1016/j.jcsr.2017.09.012.
- Feldmann, M., Heinemeyer, C., Butz, C., Caetano, E., Cunha, A ., Galanti, F. and Goldack, A. (2009), "Design of floor structures for human induced vibrations, JRC-ECCS Joint Report", JRC 55118, JRC-Scientific and Technical Report.
- Gardner, L. and Ashraf, M. (2006), "Structural design for nonlinear metallic materials", Eng. Struct., 28(6), 926-934. https://doi.org/10.1016/j.engstruct.2005.11.001.
- Gerilla, G.P., Teknomo, K. and Hokao, K. (2007), "An environmental assessment of wood and steel reinforced concrete housing construction", Build. Environ., 42(7), 2778-2784. https://doi.org/10.1016/j.buildenv.2006.07.021.
- Guan, Y., Zhou, X., Yao, X. and Shi, Y. (2019), "Vibration of cold-formed steel floors with a steel form deck and gypsum-based self-leveling underlayment", Adv. Struct. Eng., 22(13), 2741-2754. https://doi.org/10.1177/1369433219849836.
- Hassanieh, A., Chiniforush, A.A., Valipour, H.R. and Bradford, M.A. (2019), "Vibration behaviour of steel-timber composite floors, part (2): Evaluation of human-induced vibrations", J. Construct. Steel Res., 158, 156-170. https://doi.org/10.1016/j.jcsr.2019.03.026.
- Hsu, C.T.T., Punurai, S., Punurai, W. and Majdi, Y. (2014), "New composite beams having cold-formed steel joists and concrete slab", Eng. Struct., 71, 187-200. https://doi.org/10.1016/j.engstruct.2014.04.011.
- ISO 10137 (2007), Bases for Design of Structures-Serviceability of Buildings and Walkways against Vibrations, International Organization for Standardization, Geneva, Switzerland.
- ISO 2631-2 (1989), Evaluation of Human Exposure to Whole-Body Vibration - Part 2: Continuous and Shock-Induced Vibrations in Buildings (1 to 80 Hz), International Organization for Standardization; Geneva, Switzerland.
- Janowiak, J.J., Hindman, D.P. and Manbeck, H.B. (2001), "Orthotropic behavior of lumber composite materials", Wood Fiber Sci., 33(4), 580-594.
- Karki, D. and Far, H. (2021), "State of the art on composite coldformed steel flooring systems", Steel Construct., 14, 1-11. https://doi.org/10.1002/stco.202000026.
- Karren, K.W. (1967), Effects of Cold-Forming on Light-Gage Steel Members,
- Kraus, C.A. (1997), Floor Vibration Design Criterion for Cold-Formed C-Shaped Supported Residential Floor Systems, Doctoral Dissertation, Virginia Tech.
- Kyvelou, P. (2017), Structural Behaviour of Composite Cold-Formed Steel Systems, Ph.D. Dissertation, Imperial College London, London, UK.
- Kyvelou, P., Gardner, L. and Nethercot, D.A. (2015), "Composite Action between Cold-Formed Steel Beams and Wood-Based Floorboards", Int. J. Struct. Stab. Dyn., 15(8), 1-17. https://doi.org/10.1142/S0219455415400295.
- Kyvelou, P., Gardner, L. and Nethercot, D.A. (2017), "Design of composite cold-formed steel flooring systems", Structures. 12, 242-252. https://doi.org/10.1016/j.istruc.2017.09.006.
- Kyvelou, P., Gardner, L. and Nethercot, D.A. (2017), "Testing and analysis of composite cold-formed steel and wood-based flooring systems", J. Struct. Eng. (United States). 143(11), 1-16. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001885.
- Kyvelou, P., Gardner, L. and Nethercot, D.A. (2018), "Finite element modelling of composite cold-formed steel flooring systems", Eng. Struct.. 158(May 2017), 28-42. https://doi.org/10.1016/j.engstruct.2017.12.024.
- Kyvelou, P., Reynolds, T., Beckett, C., Wong, P.W. and Huang, Y. (2018), "Composite panels of cold-formed steel and timber for high- density construction", 2018 World Conference on Timber Engineering, WCTE 2018, Seoul, Republic of Korea, August.
- Liu, J., Cao, L. and Chen, Y.F. (2019), "Vibration performance of composite steel-bar truss slab with steel girder", Steel Compos. Struct., 30(6), 577-589. https://doi.org/10.12989/scs.2019.30.6.577.
- Loss, C., Piazza, M. and Zandonini, R. (2016), "Connections for steel-timber hybrid prefabricated buildings. Part II: Innovative modular structures", Construct. Build. Mater., 122, 796-808. https://doi.org/10.1016/j.conbuildmat.2015.12.001.
- Middleton, C.J. and Brownjohn, J.M.W. (2010), "Response of high frequency floors: A literature review", Eng. Struct., 32(2), 337-352. https://doi.org/10.1016/j.engstruct.2009.11.003.
- Mirambell, E., Bonilla, J., Bezerra, L.M. and Clero, B. (2021), "Numerical study on the deflections of steel-concrete composite beams with partial interaction", Steel Compos. Struct., 38(1), 67-78. https://doi.org/10.12989/scs.2021.38.1.067.
- Mohammed, A.S., Pavic, A. and Racic, V. (2018), "Improved model for human induced vibrations of high-frequency floors", Eng. Struct., 168(May), 950-966. https://doi.org/10.1016/j.engstruct.2018.04.093.
- Mulas, M.G., Lai, E. and Lastrico, G. (2018), "Coupled analysis of footbridge-pedestrian dynamic interaction", Eng. Struct., 176(September), 127-142. https://doi.org/10.1016/j.engstruct.2018.08.055.
- Murray, T.M., Allen, D.E. and Ungar, E.E. (2003), AISC Design guide 11 Floor Vibrations Due to Human Activities, American Institute of Steel Construction, United States.
- Murray, T.M., Allen, D.E., Ungar, E.E. and Davis, D.B. (2016), AISC Design Guide 11, Vibrations of Steel-Framed Structural Systems Due to Human Activity, American Institute of Steel Construction, United States of America.
- Natario, P., Silvestre, N. and Camotim, D. (2014), "Computational modelling of flange crushing in cold-formed steel sections", Thin-Walled Struct., 84, 393-405. https://doi.org/10.1016/j.tws.2014.07.006.
- Navaratnam, S., Widdowfield Small, D., Gatheeshgar, P., Poologanathan, K., Thamboo, J., Higgins, C. and Mendis, P. (2021), "Development of cross laminated timber-cold-formed steel composite beam for floor system to sustainable modular building construction", Structures. 32, 681-690. https://doi.org/https://doi.org/10.1016/j.istruc.2021.03.051.
- Parnell, R., Davis, B.W. and Xu, L. (2010), "Vibration performance of lightweight cold-formed steel floors", J. Struct. Eng., 136(6), 645-653. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000168.
- Pernica, G. (1990), "Dynamic load factors for pedestrian movements and rhythmic exercises", Canadian Acoustics. 18(2), 3-18.
- Racic, V., Pavic, A. and Brownjohn, J.M.W. (2009), "Experimental identification and analytical modelling of human walking forces: Literature review", J. Sound Vib., 326(1-2), 1-49. https://doi.org/10.1016/j.jsv.2009.04.020.
- Rack, W. and Lange, J. (2010), "Human induced vibrations of lightweight floor systems supported by cold-formed steel joists", Adv. Trends Struct. Eng., Mech. Comput., Cape Town, South Africa.
- Rainer, J.H. and Pernica, G. (1986), "Vertical dynamic forces from footsteps", Canadian Acoustics. 14(2), 12-21.
- Ramberg, W. and Osgood, W.R. (1943), Desription of stress-strain curves by three parameters, National Advisory Committee for Aeronautics.
- Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley & Sons Inc., Hoboken, New Jersey, United States.
- Saleh, A., Far, H. and Mok, L. (2018), "Effects of different support conditions on experimental bending strength of thin walled cold formed steel storage upright frames", J. Construct. Steel Res., 150, 1-6.https://doi.org/10.1016/j.jcsr.2018.07.031.
- Smith, A.L., Hicks, S.J. and Devine, P.J. (2009), Design of floors for vibration: A new approach, Steel Construction Institute Ascot, Berkshire, UK
- Tangorra, F.M., Xu, L. and Xie, W.C. (2002). "Vibration characteristics of lightweight floors using cold-formed steel joist", 16th International Specialty Conference on Cold-Formed Steel Structures, Orlando, Florida, October.
- Thirunavukkarasu, K., Kanthasamy, E., Gatheeshgar, P., Poologanathan, K., Rajanayagam, H., Suntharalingam, T. and Dissanayake, M. (2021), "Sustainable performance of a modular building system made of built-up cold-formed steel beams", Buildings. 11(10), 460. https://doi.org/10.3390/buildings11100460
- Vasdravellis, G., Uy, B., Tan, E.L. and Kirkland, B. (2015), "Behaviour and design of composite beams subjected to sagging bending and axial compression", J. Construct. Steel Res., 110, 29-39. https://doi.org/10.1016/j.jcsr.2015.03.010.
- Wyatt, T.A. (1989), Design Guide on the Vibration of Floors, Steel Construction Institute, Ascot, Berkshire, U.K.
- Xu, L. (2011), "Floor vibration performance of lightweight cold-formed steel framing", Adv. Struct. Eng., 14(4), 659-672. https://doi.org/10.1260/1369-4332.14.4.659
- Xu, L. and Tangorra, F.M. (2007), "Experimental investigation of lightweight residential floors supported by cold-formed steel C-shape joists", J. Construct. Steel Res., 63(3), 422-435. https://doi.org/10.1016/j.jcsr.2006.05.010.
- Xu, L., Zhang, S. and Yu, C. (2018), "Determination of equivalent rigidities of cold-formed steel floor systems for vibration analysis, Part II: evaluation of the fundamental frequency", Thin-Wall. Struct., 132, 1-15. https://doi.org/10.1016/j.tws.2018.08.002.
- Zhang, B., Rasmussen, B., Jorissen, A. and Harte, A. (2013), "Comparison of vibrational comfort assessment criteria for design of timber floors among the European countries", Eng. Struct., 52, 592-607. https://doi.org/10.1016/j.engstruct.2013.03.028.
- Zhang, S., Xu, L. and Qin, J. (2017), "Vibration of lightweight steel floor systems with occupants: Modelling, formulation and dynamic properties", Eng. Struct., 147, 652-665. https://doi.org/10.1016/j.engstruct.2017.06.008.
- Zhou, X., Shi, Y., Xu, L., Yao, X. and Wang, W. (2018), "A simplified method to evaluate the flexural capacity of lightweight cold-formed steel floor system with oriented strand board subfloor", Thin-Wall. Struct., 134, 40-51. https://doi.org/10.1016/j.tws.2018.09.006.
- Zhu, L., Yang, Y., Wang, Z. and Song, M. (2016), "Stability analyses of the upper chord tubes of light gauge steel-oriented strand board composite truss girders", Int. J. Struct. Stab. Dyn., 16(01), 1640012-1640012. https://doi.org/10.1142/S0219455416400125.