DOI QR코드

DOI QR Code

Capture Simulation Study for Space Debris Using Space-Nets

우주 그물을 이용한 우주 쓰레기 포획 시뮬레이션 연구

  • Hwang, Ui-Jin (Department of Aerospace Engineering, Chungnam National University) ;
  • Jang, Mi (Department of Aerospace Engineering, Chungnam National University) ;
  • Lim, Jun-Hyun (Department of Aerospace Engineering, Chungnam National University) ;
  • Shin, Hyun-Cheol (Department of Aerospace Engineering, Chungnam National University) ;
  • Sim, Chang-Hoon (Department of Aerospace Engineering, Chungnam National University) ;
  • Park, Jae-Sang (Department of Aerospace Engineering, Chungnam National University)
  • Received : 2022.03.09
  • Accepted : 2022.04.18
  • Published : 2022.06.01

Abstract

This study conducts capture simulations of space debris using a space-net. The present capture simulations are performed using ABAQUS, a nonlinear structural dynamics analysis code. A square space-net with 1 m × 1 m and a space debris with a cube configuration(0.3 m × 0.3 m × 0.3 m and 30 kg) are considered as baseline models. Using the baseline models, the capture simulation using ABAQUS is conducted to understand the capture process and establish the criteria of capture success or fail. In addition, the capture simulations are performed when various properties of the space-net are considered, and it is investigated that major design factors of the space-net are recognized to capture successfully the space debris.

본 연구는 우주 쓰레기를 제거하기 위한 청소 위성(Space debris removal satellite)의 우주 그물(Space-net)을 이용한 우주 쓰레기의 포획 시뮬레이션 연구를 수행하였다. 포획 시뮬레이션은 비선형 구조 동역학 해석 코드인 ABAQUS를 이용하여 수행하였다. 정사각형(1 m × 1 m)의 우주 그물 및 30 kg 질량의 정육면체(0.3 m × 0.3 m × 0.3 m) 형상인 우주 쓰레기를 기본 모델로 설계하였다. 기본 모델에 기반하여 포획 과정을 이해하고 포획 성공 또는 실패에 대한 기준을 정립하기 위하여 ABAQUS를 이용한 포획 시뮬레이션을 수행하였다. 또한 우주 그물의 다양한 설계 조건을 고려하여 포획 시뮬레이션을 수행하였으며, 우주 쓰레기를 성공적으로 포획하기 위한 우주 그물의 주요 설계 인자를 확인하였다.

Keywords

Acknowledgement

본 논문의 일부는 2021년도 공군사관학교 미래 항공우주학술대회에서 발표되었습니다. 본 논문은 2022년 정부(과학기술정보통신부)의 재원으로 한국연구재단 스페이스챌린지사업(NRF-2022M1A3B8076744)의 지원을 받아 수행된 연구입니다.

References

  1. Anz-Meador, P. D., "Orbital debris quarterly news," Orbital Debris Quarterly News (ODQN), Vol. 24, No. 1, 2020.
  2. Kim, H.-D., "Recent Status and Future Prospect on Space Debris Mitigation Guideline," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 48, No. 4, 2020, pp. 311~321. https://doi.org/10.5139/JKSAS.2020.48.4.311
  3. Ellery, A., "A Robotics Perspective on Human Spaceflight," Earth, Moon, and Planets, Vol. 87, No. 3, 1999, pp. 173~190. https://doi.org/10.1023/A:1013190908003
  4. O'hare, R., "British Space Junk Mission to Test Nets, Sails and Harpoons to Catch Dangerous Orbital Debris," Dailymail https://www.dailymail.co.uk/sciencetech/article-3674977/Space-junk-mission-use-nets-sails-HARPOONS-catch-dangerous-debris-knock-astronauts-satellites.html, 2016.
  5. Bombardelli, C. and Pelaez, J., "Ion Beam Shepherd for Contactless Space Debris Removal," Journal of Guidance, Control, and Dynamics, Vol. 34, No. 3, 2011, pp. 916~920. https://doi.org/10.2514/1.51832
  6. Bischof, B., Kerstein, L., Starke, J., Guenther, H. and Foth, W., "Roger-robotic Geostationary Orbit Restorer," In 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, 2003, pp. 183~193.
  7. Golebiowski, W., Michalczyk, R., Battista, U., Dyrek, M., Derda, Z. and Wormnes, K., "Reliable and Efficient Simulation of Nets for Active Space Debris Removal Purposes," In 12th International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2014.
  8. Shan, M., Guo, J., Gill, E. and Golebiowski, W., "Validation of Space Net Deployment Modeling Methods Using Parabolic Flight Experiment," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 12, 2017, pp. 3315~3323.
  9. Golebiowski, W., Michalczyk, R., Battista, U., Dyrek, M., Derda, Z. and Wormnes, K., "Validated Simulator for Space Debris Removal with Nets and Other Flexible Tethers Applications," Acta Astronautica, Vol. 129, 2016, pp. 229~240. https://doi.org/10.1016/j.actaastro.2016.08.037
  10. Forshaw, J. L., Aglietti, G. S., Navarathinam, N., Kadhem, H., Salmon, T., Pisseloup, A. and Steyn, W. H., "RemoveDEBRIS: An In-orbit Active Debris Removal Demonstration Mission," Acta astronautica, Vol. 129, 2016, pp. 448~463.
  11. Forshaw, J. L., Aglietti, G. S., Navarathinam, N., Kadhem, H., Salmon, T., Pisseloup, A. and Steyn, W. H., "The Active Space Debris Removal Mission RemoveDebris. Part 1: From Concept to Launch," Acta astronautica, Vol. 168, 2020, pp. 293~309. https://doi.org/10.1016/j.actaastro.2019.09.002
  12. Forshaw, J. L. and Aglietti, G. S., Navarathinam, N., Kadhem, H., Salmon, T., Pisseloup, A. and Steyn, W. H., "The Active Space Debris Removal Mission RemoveDebris. Part 2: In Orbit Operations," Acta astronautica, Vol. 168, 2020, pp. 310~322. https://doi.org/10.1016/j.actaastro.2019.09.001
  13. Shin, H.-C., Sim, C.-H. and Park J.-S., "A Simulation Study for Space Debris Capture Using a Space Net," The Society for Aerospace System Engineering Spring Conference, 2021.
  14. Dassault Systemes Simulia Corp., Abaqus users, Dassault systemes simulia Corp., 2013.
  15. Brown, I. F., Burgoyne, C. J. and Elsevier, B. V., "The Friction and Wear of Kevlar 49 Sliding against Aluminum at Low Velocity Under High Contact Pressures," Wear, Vol. 236, No. 1-2, 1999, pp. 315~327. https://doi.org/10.1016/S0043-1648(99)00293-8