DOI QR코드

DOI QR Code

Customized AI Exercise Recommendation Service for the Balanced Physical Activity

균형적인 신체활동을 위한 맞춤형 AI 운동 추천 서비스

  • Chang-Min Kim (Department of Information and Communication Software Engineering, Sangji University) ;
  • Woo-Beom Lee (Department of Information and Communication Software Engineering, Sangji University)
  • 김창민 (상지대학교 융합기술공과대학 정보통신소프트웨어공학과) ;
  • 이우범 (상지대학교 융합기술공과대학 정보통신소프트웨어공학과)
  • Received : 2022.12.06
  • Accepted : 2022.12.26
  • Published : 2022.12.31

Abstract

This paper proposes a customized AI exercise recommendation service for balancing the relative amount of exercise according to the working environment by each occupation. WISDM database is collected by using acceleration and gyro sensors, and is a dataset that classifies physical activities into 18 categories. Our system recommends a adaptive exercise using the analyzed activity type after classifying 18 physical activities into 3 physical activities types such as whole body, upper body and lower body. 1 Dimensional convolutional neural network is used for classifying a physical activity in this paper. Proposed model is composed of a convolution blocks in which 1D convolution layers with a various sized kernel are connected in parallel. Convolution blocks can extract a detailed local features of input pattern effectively that can be extracted from deep neural network models, as applying multi 1D convolution layers to input pattern. To evaluate performance of the proposed neural network model, as a result of comparing the previous recurrent neural network, our method showed a remarkable 98.4% accuracy.

본 논문은 직종별 근무 환경에 따른 상대적 운동량을 고려한 맞춤형 AI 운동 추천 서비스 방법을 제안한다. 가속도 및 자이로 센서를 활용하여 수집된 데이터를 18가지 일상생활의 신체활동으로 분류한 WISDM 데이터베이스를 기반으로 전신, 하체, 상체의 3가지 활동으로 분류한 후 인식된 활동 지표를 통해 적절한 운동을 추천한다. 본 논문에서 신체활동 분류를 위해서 사용하는 1차원 합성곱 신경망(1D CNN; 1 Dimensional Convolutional Neural Network) 모델은 커널 크기가 다른 다수의 1D 컨볼루션(Convolution) 계층을 병렬적으로 연결한 컨볼루션 블록을 사용한다. 컨볼루션 블록은 하나의 입력 데이터에 다층 1D 컨볼루션을 적용함으로써 심층 신경망 모델로 추출할 수 있는 입력 패턴의 세부 지역 특징을 보다 얇은 계층으로도 효과적으로 추출 할 수 있다. 제안한 신경망 모델의 성능 평가를 위해서 기존 순환 신경망(RNN; Recurrent Neural Network) 모델과 비교 실험한 결과 98.4%의 현저한 정확도를 보였다.

Keywords

Acknowledgement

본 과제(결과물)는 2022년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.(2022RIS-005)

References

  1. J. H. Kim, Y. H. Noh and D. U. Jeong, "Implementation of Real-time Heart Activity Monitoring System Using Heart Sound," Journal of the Korea Institute of Convergence Signal Processing, vol. 19, no. 1, pp. 14-19, 2018.
  2. J. Wang, Y. Chen, S. Hao, X. Peng and L. Hu, "Deep learning for sensor-based activity recognition: A survey," Pattern recognition letters, vol. 119, pp. 3-11, 2019. https://doi.org/10.1016/j.patrec.2018.02.010
  3. Y. Tian, J. Zhang, J. Wang, Y. Geng, and X. Wang, "Robust human activity recognition using single accelerometer via wavelet energy spectrum features and ensemble feature selection," Systems Science & Control Engineering, vol. 8, no. 1, pp. 83-96, 2020. https://doi.org/10.1080/21642583.2020.1723142
  4. J. Kang, J. Shin, J.Shin, D. Lee and A. Choi, "Robust Human Activity Recognition by Integrating Image and Accelerometer Sensor Data Using Deep Fusion Network," Sensors, vol. 22, no. 1, pp. 174-193, 2021. https://doi.org/10.3390/s22010174
  5. D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, "Human activity recognition on smartphones using a multi class hardware-friendly support vector machine," In International workshop on ambient assisted living. Springer, Berlin, Heidelberg, 2012, pp. 216-223.
  6. G. Sengul, M. Karakaya, S. Misra, O. O. Abayomi-Alli and R. Damasevicius, "Deep learning based fall detection using smartwatches for healthcare applications," Biomedical Signal Processing and Control, vol. 71, pp. 103242-103229, Jan. 2022.
  7. A. D. Ignatov, V. V. Strijov, "Human activity recognition using quasiperiodic time series collected from a single tri-axial accelerometer," Multimedia tools and applications, vol. 75, no. 12, pp. 7257-7270, Oct. 2016. https://doi.org/10.1007/s11042-015-2643-0
  8. A. Gupta, V. B. Semwal. (2020, Oct.). Multiple task human gait analysis and identification: ensemble learning approach. In Emotion and information processing. Springer, Cham. pp. 185-197. Available: https://doi.org/10.1007/978-3-030-48849-9_12
  9. G. M. Weiss, "Wisdm smartphone and smartwatch activity and biometrics dataset," UCI Machine Learning Repository: WISDM Smartphone and Smartwatch Activity and Biometrics Dataset Data Set, vol. 7, pp. 133190-133202, 2019.
  10. X. Li, Y. Wang, B. Zhang, and J. Ma, "PSDRNN: An efficient and effective HAR scheme based on feature extraction and deep learning," IEEE Transactions on Industrial Informatics, vol. 16, no. 10, pp. 6703-6713, 2020. https://doi.org/10.1109/TII.2020.2968920
  11. K. Xia, J. Huang and H. Wang, "LSTM-CNN architecture for human activity recognition," IEEE Access, vol. 8, pp. 56855-56866, 2020. https://doi.org/10.1109/ACCESS.2020.2982225
  12. S. W. Pienaar and R. Malekian. "Human activity recognition using LSTM-RNN deep neural network architecture," In 2019 IEEE 2nd wireless africa conference (WAC), 2019, pp. 1-5.
  13. N. Dua, S. N. Singh and V. B. Semwal, "Multi-input CNN-GRU based human activity recognition using wearable sensors,". Computing, vol. 103, no. 7, pp. 1461-1478, 2021. https://doi.org/10.1007/s00607-021-00928-8
  14. U. Verma, P. Tyagi and M. Kaur, "Single Input Single Head CNN-GRU-LSTM Architecture for Recognition of Human Activities," Indonesian Journal of Electrical Engineering and Informatics (IJEEI), vol. 10, no. 2, pp. 410-420, 2022.