Abstract
This paper proposes an adaptive sliding mode control with radial basis function neural network(RBFNN) scheme to enhance the performance of position and attitude tracking control of quadrotor UAV. The RBFNN is utilized on the approximation of nonlinear function in the UAV dynmic model and the weights of the RBFNN are adjusted online according to adaptive law from the Lyapunov stability analysis to ensure the state hitting the sliding surface and sliding along it. In order to compensate the network approximation error and eliminate the existing chattering problems, the sliding mode control term is adjusted by adaptive laws, which can enhance the robust performance of the system. The simulation results of the proposed control method confirm the effectiveness of the proposed controller which applied for a nonlinear quadrotor UAV is presented. Form the results, it's shown that the developed control system is achieved satisfactory control performance and robustness.
본 논문은 쿼드로터 무인기의 위치 및 자세 추적 제어 성능을 향상시키기 위해 RBFNN 방식을 이용한 적응형 슬라이딩 모드 제어를 제안한다. RBFNN은 UAV 동적 모델에서 비선형 함수의 근사화에 활용되며, RBFNN의 가중치는 슬라이딩 표면에 부딪혀 미끄러지는 상태를 보장하기 위해 Lyapunov 안정성 분석의 적응 법칙에 따라 온라인으로 조정된다. 네트워크 근사 오류를 보상하고 기존 채터링 문제를 제거하기 위해 슬라이딩 모드 제어 항은 적응 법칙에 의해 조정되어 시스템의 강력한 성능을 향상시킨다. 제안된 제어 방법의 시뮬레이션 결과는 비선형 쿼드로터 무인 항공기에 적용된 제안된 제어기의 효율성을 확인하였다. 그 결과, 제안된 제어 시스템이 만족스러운 제어 성능과 견고성을 달성함을 알 수 있었다.