DOI QR코드

DOI QR Code

Control of Quadrotor UAV Using Adaptive Sliding Mode with RBFNN

RBFNN을 가진 적응형 슬라이딩 모드를 이용한 쿼드로터 무인항공기의 제어

  • Han-Ho Tack (Dept. of Convergence Electronic Engineering, Gyeongsang National University)
  • 탁한호 (경상국립대학교 융합전자공학부)
  • Received : 2022.11.16
  • Accepted : 2022.12.10
  • Published : 2022.12.31

Abstract

This paper proposes an adaptive sliding mode control with radial basis function neural network(RBFNN) scheme to enhance the performance of position and attitude tracking control of quadrotor UAV. The RBFNN is utilized on the approximation of nonlinear function in the UAV dynmic model and the weights of the RBFNN are adjusted online according to adaptive law from the Lyapunov stability analysis to ensure the state hitting the sliding surface and sliding along it. In order to compensate the network approximation error and eliminate the existing chattering problems, the sliding mode control term is adjusted by adaptive laws, which can enhance the robust performance of the system. The simulation results of the proposed control method confirm the effectiveness of the proposed controller which applied for a nonlinear quadrotor UAV is presented. Form the results, it's shown that the developed control system is achieved satisfactory control performance and robustness.

본 논문은 쿼드로터 무인기의 위치 및 자세 추적 제어 성능을 향상시키기 위해 RBFNN 방식을 이용한 적응형 슬라이딩 모드 제어를 제안한다. RBFNN은 UAV 동적 모델에서 비선형 함수의 근사화에 활용되며, RBFNN의 가중치는 슬라이딩 표면에 부딪혀 미끄러지는 상태를 보장하기 위해 Lyapunov 안정성 분석의 적응 법칙에 따라 온라인으로 조정된다. 네트워크 근사 오류를 보상하고 기존 채터링 문제를 제거하기 위해 슬라이딩 모드 제어 항은 적응 법칙에 의해 조정되어 시스템의 강력한 성능을 향상시킨다. 제안된 제어 방법의 시뮬레이션 결과는 비선형 쿼드로터 무인 항공기에 적용된 제안된 제어기의 효율성을 확인하였다. 그 결과, 제안된 제어 시스템이 만족스러운 제어 성능과 견고성을 달성함을 알 수 있었다.

Keywords

References

  1. Harikrishnan Suresh, Abid Sulficar and Vijay Desai "Hovering control of a quadcopter using linear and nonlinear techniques," Int. J. Mechatronics and Automation, Vol. 6, 2018, pp. 120-129. https://doi.org/10.1504/IJMA.2018.094488
  2. N. Jaggi, K. Mukherjee and M. Khanra, "Design and Test of a Controller for the Pluto 1.2 Quadcopter," 7th Inter. Con. on Advances in Control and Optimization of Dynamical System, 2022, pp. 752-757.
  3. F. Yacef, O. Bouhali, M. Hamerlain and N. Rizoug, "Observer-based Adaptive Fuzzy Backstepping Tracking Control of Quadrotor Unmanned Aerial Vehicle Powered by Li-ion Battery," Journal of Intelligent Robot Syst., No. 84, 2016, pp. 179-197.
  4. Ahmed Eltayeb, Mohd Fua'ad Rahmat, M. A Mohammed Eltoum and M. A. M Basri "Robust Adaptive Sliding Mode Control Design for Quadrotor Unmanned Aerial Vehicle Trajectory Tracking,"International Journal of Computing and Digital Systems, 2020, pp. 249-256.
  5. A. Eltayeb, M. F. Rahmat, M. A. M. Basri and M. A M Mansour, "Adaptive Sliding Mode Control Design for the Attitude of the Quadrotor Unmanned Aerial Vehicle (UAV)," Sustainable and Integrated Engineering International Conference 2019, pp. 1-7.
  6. Laihong Zhou, Juqian Zhang, Houxin She and Hong Jin,"Quadrotor UAV flight control via a novel saturation integral backstepping controller," Journal for Control, Measurement, Electronics, Computing and Communications, Vol. 60, 2019, pp. 193-206. https://doi.org/10.1080/00051144.2019.1610838
  7. Hadi Razmi and Sima Afshinfar,"Neural network based adaptive sliding mode control design for position and attitude control of a quadrotor UAV", Aerospce Science and Technology, Vol 91, 2019, pp. 12-27. https://doi.org/10.1016/j.ast.2019.04.055
  8. P. Cheng, B. Yue, G. Xun, Q. j. Gao, C. j. Zhao and Y. T. Tian, "Modeling and Robust Backstepping Sliding Mode Control with Adaptive RBFNN for a Novel Coaxial Eight-rotor UAV," IEEE/CAA Journal of Automatica Sinica., 2(1), 2015, pp. 59-64.