DOI QR코드

DOI QR Code

Ultimate axial load of rectangular concrete-filled steel tubes using multiple ANN activation functions

  • Lemonis, Minas E. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education) ;
  • Daramara, Angeliki G. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education) ;
  • Georgiadou, Alexandra G. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education) ;
  • Siorikis, Vassilis G. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education) ;
  • Tsavdaridis, Konstantinos Daniel (School of Civil Engineering, Faculty of Engineering and Physical Sciences, University of Leeds) ;
  • Asteris, Panagiotis G. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education)
  • Received : 2021.06.11
  • Accepted : 2021.12.30
  • Published : 2022.02.25

Abstract

In this paper a model for the prediction of the ultimate axial compressive capacity of square and rectangular Concrete Filled Steel Tubes, based on an Artificial Neural Network modeling procedure is presented. The model is trained and tested using an experimental database, compiled for this reason from the literature that amounts to 1193 specimens, including long, thin-walled and high-strength ones. The proposed model was selected as the optimum from a plethora of alternatives, employing different activation functions in the context of Artificial Neural Network technique. The performance of the developed model was compared against existing methodologies from design codes and from proposals in the literature, employing several performance indices. It was found that the proposed model achieves remarkably improved predictions of the ultimate axial load.

Keywords

References

  1. ACI 318 (2014), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, U.S.A.
  2. Ahmadi, M., Naderpour, H. and Kheyroddin, A. (2017). "ANN model for predicting the compressive strength of circular steel-confined concrete." International Journal of Civil Engineering, 15, 213-221. https://doi.org/10.1007/s40999-016-0096-0
  3. AIJ (1997), A.I. of Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures, Architectural Institute of Japan, Tokyo, Japan
  4. Akbar, H., Suryana, N. and Sahib, S. (2011), "Training neural networks using clonal selection algorithm and particle swarm optimization: A comparisons for 3D object recognition", 2011 11th International Conference on Hybrid Intelligent Systems (HIS), 692-697.
  5. Al-Khaleefi, A.M., Terro, M.J., Alex, A.P. and Wang, Y. (2002), "Prediction of fire resistance of concrete filled tubular steel columns using neural networks", Fire Safety J., 37, 339. https://doi.org/10.1016/S0379-7112(01)00065-0.
  6. Alavi, A.H. and Gandomi, A.H. (2012), "Energy-based numerical models for assessment of soil liquefaction", Geosci. Front., 3(4), 541-555. https://doi.org/10.1016/j.gsf.2011.12.008.
  7. Ali, F., Nadjai, A. and Goodfellow, N. (2016), "Experimental and numerical study on the performance of hollow and concrete-filled elliptical steel columns subjected to severe fire", Fire Mater., 40, 635-652. https://doi.org/10.1002/fam.2316.
  8. ANSI/AISC 360 (2016), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, U.S.A.
  9. Apostolopoulou, M., Armaghani, D.J., Bakolas, A., Douvika, M.G., Moropoulou, A. and Asteris, P.G. (2019), "Compressive strength of natural hydraulic lime mortars using soft computing techniques", Procedia Struct. Integrity, 17, 914-923. https://doi.org/10.1016/j.prostr.2019.08.122.
  10. Apostolopoulou, M., Asteris, P.G., Armaghani, D.J., Douvika, MG., Lourenco, P.B., Cavaleri, L., Bakolas, A. and Moropoulou, A. (2020), "Mapping and holistic design of natural hydraulic lime mortars", Cement Concrete Res., 136, 106167, https://doi.org/10.1016/j.cemconres.2020.106167.
  11. Aqil, M., Kita, I., Yano, A. and Nishiyama, S. (2007), "A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff", J. Hydrology, 337, 22-34. https://doi.org/10.1016/j.jhydrol.2007.01.013.
  12. Armaghani, D.J. and Asteris, P.G. (2021), "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural Comput. Appl., 33(9), 4501-4532. http://dx.doi.org/10.1007/s00521-020-05244-4
  13. Armaghani, D.J., Hajihassani, M., Sohaei, H., Mohamad, E.T., Marto, A., Motaghedi, H. and Moghaddam, M.R. (2015), "Neuro-fuzzy technique to predict air-overpressure induced by blasting", Arab. J. Geosci., 8(12), 10937-10950. https://doi.org/10.1007/s12517-015-1984-3.
  14. Armaghani, D.J., Mamou, A., Maraveas, C., Roussis, P.C., Siorikis, V.G., Skentou, A.D. and Asteris, P.G. (2021), "Predicting the unconfined compressive strength of granite using only two nondestructive test indexes", Geomech. Eng., 25(4).
  15. Armaghani, D.J., Momeni, E. and Asteris, P.G. (2020), "Application of group method of data handling technique in assessing deformation of rock mass", Metaheuristic Comput. Appl., 1(1), 1-18. http://dx.doi.org/10.12989/mca.2020.1.1.001.
  16. AS5100 (2004), Australian Standard - Bridge Design, Part 6: Steel and Composite Construction, Standards Australia International, Sydney, Australia
  17. Aslani, F., Uy, B., Tao, Z. and Mashiri, F., (2015), "Behaviour and design of composite columns incorporating compact high-strength steel plates", J. Construct. Steel Res., 107, 94-110, https://doi.org/10.1016/j.jcsr.2015.01.005.
  18. Asteris, P.G and Mokos, V.G. (2020), "Concrete compressive strength using artificial neural networks", Neural Comput. Appl., 32, 1807-11826. https://doi.org/10.1007/s00521-019-04663-2.
  19. Asteris, P.G., Apostolopoulou, M., Skentou, A.D. and Moropoulou, A. (2019), "Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars", Comput. Concrete, 24, 329-345. 10.12989/cac.2019.24.4.329.
  20. Asteris, P.G., Lemonis, M.E., Le, T.T. and Tsavdaridis, K.D. (2021c), "Evaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modeling", Eng. Struct., 248, 113297, https://doi.org/10.1016/j.engstruct.2021.113297.
  21. Asteris, P.G., Lemonis, M.E., Nguyen, T.A., Le, H.V. and Pham, B.T. (2021a). "Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes", Steel Compos. Struct., 39(4), 471-491. https://doi.org/10.12989/scs.2021.39.4.471.
  22. Asteris, P.G., Lourenco, P.B., Hajihassani, M., Adami, C.E.N., Lemonis, M.E., Skentou, A.D., Marques, R., Nguyen, H., Rodrigues, H. and Varum, H. (2021d), "Soft computing based models for the prediction of masonry compressive strength", Eng. Struct., 248, 113276, https://doi.org/10.1016/j.engstruct.2021.113276.
  23. Asteris, P.G., Skentou, A.D., Bardhan, A., Samui, P., Pilakoutas, K. (2021b), "Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models", Cement Concrete Res., 2021, 145, 106449, https://doi.org/10.1016/j.cemconres.2021.106449.
  24. Baig, M.N., Fan, J. and Nie, J. (2006), "Strength of concrete filled steel tubular columns", Tsinghua Science Technol., 11, 657-666. https://doi.org/10.1016/S1007-0214(06)70248-6
  25. Battiti, R. (1992), "First- and second-order methods for learning: Between steepest descent and newton's method." Neural Comput., 4, 141-166. https://doi.org/10.1162/neco.1992.4.2.141.
  26. Behnam, A. and Esfahani, M.R. (2018). "Prediction of biaxial bending behavior of steel-concrete composite beam-columns by artificial neural network", Iran Univ. Sci. Technol., 8, 381-399.
  27. Bradford, M.A., Loh, H.Y. and Uy, B. (2002), "Slenderness limits for filled circular steel tubes", J. Construct. Steel Res., 58, 243-252. https://doi.org/10.1016/S0143-974X(01)00043-8.
  28. Brownlee, J. (2016), Master Machine Learning Algorithms: Discover How They Work and Implement Them From Scratch, https://books.google.ca/books.
  29. Caprili, S. and Salvatore, W. (2015), "Cyclic behaviour of uncorroded and corroded steel reinforcing bars", Construct. Build. Mater., 76, 168-186. https://doi.org/10.1016/j.conbuildmat.2014.11.025.
  30. Cederwall, K., Engstrom, B. and Grauers, M., (1990), "High-Strength Concrete Used in Composite Columns", ACI Symposium Publication, 121, 195-214.
  31. Chang, X., Wei, Y.Y. and Yun, Y.C. (2012), "Analysis of steel-reinforced concrete-filled-steel tubular (SRCFST) columns under cyclic loading", Construct. Build. Mater. 28, 88-95. https://doi.org/10.1016/j.conbuildmat.2011.08.033.
  32. Chen, J. and Jin, W., (2010), "Experimental investigation of thin-walled complex section concrete-filled steel stub columns", Thin-Wall. truct. 48(9), 718-724, https://doi.org/10.1016/j.tws.2010.05.001.
  33. Chen, S., Zhang, R., Jia, LJ., Wang, JY. and Gu, P., (2018), "Structural behavior of UHPC filled steel tube columns under axial loading", Thin-Wall. Struct., 130, 550-563, https://doi.org/10.1016/j.tws.2018.06.016.
  34. Choi, K.K. and Xiao, Y. (2009). "Analytical studies of concrete-filled circular steel tubes under axial compression", J. Struct. Eng., 136, 565-573. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000156.
  35. Chung, J., Matsui, C. and Tsuda, K., (2001), "Simplified design formula of slender concrete filled steel tubular beam-columns", Struct. Eng. Mech., 12(1), 71-84, https://doi.org/10.12989/sem.2001.12.1.071.
  36. Dai, X. and Lam, D. (2010), "Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns", J. Construct. Steel Res., 66, 931-942. https://doi.org/10.1016/j.jcsr.2010.02.003.
  37. DBJ13-51-2010 (2010), Technical Specification for Concrete-filled Steel Tubular Structures, The Construction Department of Fujian Province, Fuzhou, China
  38. Du, K.L. and Swamy, M.N. (2013), Neural Networks and Statistical Learning, Springer Science & Business Media.
  39. Du, Y., Chen, Z. and Xiong, M.X., (2016), "Experimental behavior and design method of rectangular concrete-filled tubular columns using Q460 high-strength steel", Construct. Build. Mater., 125, 856-872, https://doi.org/10.1016/j.conbuildmat.2016.08.057.
  40. Du, Y., Chen, Z. and Yu, Y., (2016), "Behavior of rectangular concrete-filled high-strength steel tubular columns with different aspect ratio", Thin-Wall. Struct., 109, 304-318, https://doi.org/10.1016/j.tws.2016.10.005.
  41. Du, Y., Chen, Z., Zhang, C. and Cao, X. (2017), "Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks", Front. Comput. Sci., 11, 863-873. https://doi.org/10.1007/s11704-016-5113-6.
  42. Dundu, M., (2016), "Column buckling tests of hot-rolled concrete filled square hollow sections of mild to high strength steel", Eng. Struct., 127, 73-85, https://doi.org/10.1016/j.engstruct.2016.08.039.
  43. Duong, H.T., Phan, H.C., Le, T.T. and Bui, N.D. (2020), "Optimization design of rectangular concrete-filled steel tube short columns with Balancing Composite Motion Optimization and data-driven model", Struct., 28, 757-765. https://doi.org/10.1016/j.istruc.2020.09.013.
  44. EN1994 (2004), Eurocode 4 - Design of composite steel and concrete structures - Part 1-1: General Rules and Rules for Buildings, CEN, Brussels, Belgium.
  45. Fam, A., Qie, F.S. and Rizkalla, S. (2004), "Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads", J. Struct. Eng., 130, 631-640. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(631).
  46. Furlong, R.W., (1967), "Strength of steel-encased concrete beam columns", J. Struct. Div., 93(5), 113-124. https://doi.org/10.1061/JSDEAG.0001761.
  47. Ghannam, S., Jawad, Y.A. and Hunaiti, Y. (2004), "Failure of lightweight aggregate concrete-filled steel tubular columns", Steel Compos. Struct., 4(1), 1-8. https://doi.org/10.12989/scs.2004.4.1.001.
  48. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Construct. Steel Res., 60, 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
  49. Goel, T. and Tiwary, A. (2018), "Finite element modeling of Circular Concrete Filled Steel Tube (CFST)", Indian J. Sci. Technol., 11, 1-9. https://doi.org/10.17485/ijst/2018/v11i34/130853.
  50. Grauers, M. (1993), Composite Columns of Hollow Steel Sections Filled with High Strength Concrete, Ph.D. Dissertation, Chalmers University of Technology, Goteborg.
  51. Guo, L. (2006), Theoretical and Experimental Research on the Behavior of Concrete-Filled Rectangular Hollow Section Steel Tubes, PhD Dissertation, Harbin Institute of Technology, Harbin.
  52. Guo, L., Zhang, S., Wang, Y. and Liu, J., (2005), "Analytical and experimental research on axially loaded slender HSC filled RHS steel tubular columns", Indus. Construct., 35(3),75-79. https://doi.org/10.3321/j.issn:1000-8993.2005.03.026
  53. Guo, L.H., Zhang, S.M. and Kim, W.J., (2006), "Elastic and elastic-plastic buckling behavior of SHS steel tube filled with concrete", Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 38(8), 1350-1354.
  54. Gupta, R., Gijzen van, M.B. and Vuik, C.K. (2013), "Efficient Two-Level Preconditioned Conjugate Gradient Method on the GPU", In High Performance Computing for Computational Science - VECPAR 2012, 36-49. Springer, Berlin. https://doi.org/10.1007/978-3-642-38718-0_7.
  55. Han, L.H, Yao, G.H. and Zhao, X.L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Construct. Steel Res., 61(9), 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004.
  56. Han, L.H. (2002), "Tests on stub columns of concrete-filled RHS sections", J. Construct. Steel Res., 58(3), 353-372. https://doi.org/10.1016/S0143-974X(01)00059-1.
  57. Han, L.H. and Yang, Y.F. (2001), "Influence of concrete compaction on the behavior of concrete filled steel tubes with rectangular sections", Adv. Struct. Eng., 4, 93-100. https://doi.org/10.1260/1369433011502381.
  58. Han, L.H. and Yang, Y.F., (2003), "Analysis of thin-walled steel RHS columns filled with concrete under long-term sustained loads", Thin-Wall. Struct., 41(9), 849-870. https://doi.org/10.1016/S0263-8231(03)00029-6.
  59. Han, L.H. and Yao, G.H. (2003), "Influence of concrete compaction on the strength of concrete-filled steel RHS columns", J. Construct. Steel Res., 59(6), 751-767. https://doi.org/10.1016/S0143-974X(02)00076-7.
  60. Han, L.H. and Yao, G.H. (2004), "Experimental behavior of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC)", Thin-Wall. Struct., 42(9), 1357-1377, https://doi.org/10.1016/j.tws.2004.03.016.
  61. Han, L.H. and Yao, G.H., (2003), "Behavior of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes", J. Construct. Steel Res., 59(12), 1455-1475, https://doi.org/10.1016/S0143-974X(03)00102-0.
  62. Han, L.H., Hou, C. and Wang, Q.L. (2012), "Square concrete filled steel tubular (CFST) members under loading and chloride corrosion: experiments", J. Construct. Steel Res., 71, 11-25. https://doi.org/10.1016/j.jcsr.2011.11.012.
  63. Han, L.H., Huo, J.S. and Wang, Y.C. (2005), "Compressive and flexural behaviour of concrete filled steel tubes after exposure to standard fire", J. Construct. Steel Res., 61, 882-901. https://doi.org/10.1016/j.jcsr.2004.12.005.
  64. Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Construct. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
  65. Ho, N.X. and Le, T.T. (2021), "Effects of variability in experimental database on machine-learning-based prediction of ultimate load of circular concrete-filled steel tubes", Measurement, 176, 109198. https://doi.org/10.1016/j.measurement.2021.109198.
  66. Hossain, K.M.A. and Chu, K, (2019), "Confinement of six different concretes in CFST columns having different shapes and slenderness", Int. J. Adv. Struct. Eng., 11, 255-270. https://doi.org/10.1007/s40091-019-0228-2.
  67. Huang, L., Asteris, P.G., Koopialipoor, M., Armaghani, D.J. and Tahir, M.M. (2019), "Invasive weed optimization technique-based ANN to the rediction of rock tensile strength", Appl. Sci. 9, 5372. https://doi.org/10.3390/app9245372.
  68. Huang, Z., Uy, B., Li, D. and Wang, J., (2020), "Behavior and design of ultra-high-strength CFST members subjected to compression and bending", J. Construct. Steel Res., 175. https://doi.org/10.1016/j.jcsr.2020.106351.
  69. Ibanez, C., Hernandez-Figueirido, D. and Piquer, A. (2018), "Shape effect on axially loaded high strength CFST stub columns", J. Construct. Steel Res., 147, 247-256, https://doi.org/10.1016/j.jcsr.2018.04.005.
  70. Ibanez, C., Hernandez-Figueirido, D. and Piquer, A. (2021), "Effect of steel tube thickness on the behaviour of CFST columns: Experimental tests and design assessment", Eng. Struct., 230, 111687. https://doi.org/10.1016/j.engstruct.2020.111687.
  71. Ibanez, C., Hernandez-Figueirido, D. and Piquer, A. (2021), "Effect of steel tube thickness on the behaviour of CFST columns: Experimental tests and design assessment", Eng. Struct., 230. https://doi.org/10.1016/j.engstruct.2020.111687.
  72. Inai, E. and Sakino, K. (1996), "Simulation of flexural behavior of square concrete filled steel tubular columns", Proceedings of the Third Joint Technical Coordinating Committee Meeting, U.S.-Japan Cooperative Research Program, Phase 5: Composite and Hybrid Structures, Hong Kong, National Science Foundation, Arlington, Virginia.
  73. Islam, M.M., Ali, R.B., Begum, M. and Rahman M.S. (2021), "Experimental study of square concrete-filled welded cold-formed steel columns under concentric Loading", Arab. J. Sci. Eng. 46, 4225-4237. https://doi.org/10.1007/s13369-020-04797-9.
  74. Jegadesh, J. and Jayalekshmi, S. (2015), "A review on artificial neural network concepts in structural engineering applications", Int. J. Appl. Civil Environ. Eng., 1, 6-11.
  75. Jegadesh, S. and Jayalekshmi, S. (2015b), "Application of artificial neural network for calculation of axial capacity of circular concrete filled steel Tubular Columns", Int. J. Earth Sci. Eng., 8, 35-42.
  76. Kayacan, E. and Khanesar, M.A. (2015), Fuzzy Neural Networks for Real Time Control Applications: Concepts, Modeling and Algorithms for Fast Learning. 1. Butterworth-Heinemann.
  77. Kechagias, J., Tsiolikas, A., Asteris, P. and Vaxevanidis, N. (2018), "Optimizing ANN performance using DOE: Application on turning of a titanium alloy", MATEC Web of Conferences, 178, 01017.
  78. Khan, M., Uy, B., Tao, Z. and Mashiri, F. (2017), "Behaviour and design of short high-strength steel welded box and concrete-filled tube (CFT) sections", Eng. Struct., 147, 458-472. https://doi.org/10.1016/j.engstruct.2017.06.016.
  79. Khan, M., Uy, B., Tao, Z. and Mashiri, F., (2017), "Concentrically loaded slender square hollow and composite columns incorporating high strength properties", Eng. Struct., 131, 69-89. https://doi.org/10.1016/j.engstruct.2016.10.015.
  80. Khanouki, M.M.A., Ramli Sulong, N.H., Shariati, M. and Tahir, M.M. (2016), "Investigation of through beam connection to concrete filled circular steel tube (CFCST) column", J. Construct. Steel Res., 121, 144-162. https://doi.org/10.1016/j.jcsr.2016.01.002.
  81. Knowles, R.B. and Park, R. (1969), "Strength of concrete filled steel tubular columns", J. Struct. Div., 95(12), 2565-2588. https://doi.org/10.1061/JSDEAG.0002425.
  82. Krishan, A.L., Chernyshova, E.P. and Sabirov, R.R. (2016), "Calculating the strength of concrete filled steel tube columns of solid and ring cross-section", Procedia Engineering, 150, 1878-1884. https://doi.org/10.1016/j.proeng.2016.07.186.
  83. Lam, D. and Williams, C.A. (2004), "Experimental study on concrete filled square hollow sections", Steel Compos. Struct., 4(2), 95-112, https://doi.org/10.12989/scs.2004.4.2.095.
  84. Liew, JR., Xiong, M. and Xiong, D. (2016), "Design of concrete filled tubular beam-columns with high strength steel and concrete", Structures, 8, 213-226. https://doi.org/10.1016/j.istruc.2016.05.005.
  85. Lin, C.Y. (1988), "Axial capacity of concrete infilled cold-formed steel columns", Ninth International Specialty Conference on Cold-Formed Steel Structures, St. Louis, Missouri, U.S.A.
  86. Liu, D. (2005), "Tests on high-strength rectangular concrete-filled steel hollow section stub columns", J. Construct. Steel Res., 61(7), 902-911. https://doi.org/10.1016/j.jcsr.2005.01.001.
  87. Liu, D. and Gho, W.M. (2005), "Axial load behavior of high-strength rectangular concrete-filled steel tubular stub columns", Thin-Wall. Struct., 43(8), 1131-1142. https://doi.org/10.1016/j.tws.2005.03.007.
  88. Liu, D., Gho, W.M. and Yuan, J. (2003), "Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns", J. Construct. Steel Res., 59(12), 1499-1515. https://doi.org/10.1016/S0143-974X(03)00106-8.
  89. Liu, S., Ding, X., Li, X., Liu, Y. and Zhao, S. (2019), "Behavior of rectangular-sectional steel tubular columns filled with high-strength steel fiber reinforced concrete under axial compression", Materials, 12, 2716. https://doi.org/10.3390/ma12172716.
  90. Lourakis, M.I.A. (2005), "A brief description of the Levenberg-Marquardt algorithm implemented by levmar", Hellas (FORTH), Institute of Computer Science Foundation for Research and Technology, http://www.ics.forth.gr/~lourakis/levmar/levmar.
  91. Lu, D., Gong, Y., Ding, F., Wang, L., Deng, C., Yuan, T., Chen, L. and Ren, E. (2021), "Experimental study of square CFST stub columns with a low steel ratio under axial loading", Front. Materials, 8(52), https://doi.org/10.3389/fmats.2021.629819.
  92. Lu, Y.Q. and Kennedy, D.J.L. (1994), "The flexural behavior of concrete-filled hollow structural sections", Can. J. Civ. Eng., 21(1), 111-130. https://doi.org/10.1139/l94-011.
  93. Lu, X., Yu, Y. and Chen, Y., (1999), "Studies on the behavior of concrete-filled rectangular tubular short column: 1 Experiment", Build. Struct., 29(10), 41-43.
  94. Lue, D.M., Liu, J.L. and Yen, T. (2007), "Experimental study on rectangular CFT columns with high-strength concrete", J. Construct. Steel Res., 63(1), 37-44. https://doi.org/10.1016/j.jcsr.2006.03.007.
  95. Luo, L. (1986), Experimental Research on Long Filled Concrete Square Steel Tube Columns Under Axial Compressive Load, Masters Thesis, Zhengzhou University of Technology. Zhengzhou.
  96. Ly, H.B., Pham, B.T., Le, L.M., Le, T.T., Le, V.M. and Asteris, P.G. (2021), "Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models", Neural Comput. Appl., 33(8), 3437-3458. https://doi.org/10.1007/s00521-020-05214-w.
  97. Marquardt, D. (1963), "An algorithm for least-squares estimation of nonlinear parameters", J. Soc. Ind. Appl. Mathem., 11, 431-441. https://doi.org/10.1137/0111030.
  98. Matsui, C. and Tsuda, K. (1996), "Strength and behavior of slender concrete filled steel tubular columns", Proceedings of The Second International Symposium on Civil Infrastructure Systems. Hong Kong, China.
  99. Matsui, C., Tsuda, K. and Ishibashi, Y. (1995), "Slender concrete filled steel tubular columns under combined compression and bending", Structural Steel, PSSC95, 4th Pacific Structural Steel Conference, 3, Singapore.
  100. Moller, M.F. (1993), "A scaled conjugate gradient algorithm for fast supervised learning", Neural Networks, 6, 525-533. https://doi.org/10.1016/S0893-6080(05)80056-5.
  101. Momeni, E., Armaghani, D.J., Hajihassani, M. and Amin, M.F.M. (2015), "Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks", Measurement, 60, 50-63. https://doi.org/10.1016/j.measurement.2014.09.075.
  102. Mursi, M. and Uy, B. (2004), "Strength of slender concrete filled high strength steel box columns", J. Construct. Steel Res., 60(12), 1825-1848. https://doi.org/10.1016/j.jcsr.2004.05.002.
  103. Nakahara, H. and Sakino, K. (1998), "Axial compressive and uniform bending tests of high strength concrete filled square steel tubular columns", Proceedings of the Fifth Pacific Structural Steel Conference, Seoul, Korea.
  104. Nguyen, T.T., Thai, H.T., Ngo, T., Uy, B. and Li, D. (2021), "Behavior and design of high strength CFST columns with slender sections", J. Construct. Steel Res., 182, https://doi.org/10.1016/j.jcsr.2021.106645.
  105. Powell, M.J.D. (1977), "Restart procedures for the conjugate gradient method", Mathematical Programming, 12, 241-254. https://doi.org/10.1007/BF01593790.
  106. Psyllaki, P., Stamatiou, K., Iliadis, I., Mourlas, A., Asteris, P. and Vaxevanidis, N. (2018), "Surface treatment of tool steels against galling failure", MATEC Web of Conferences, 188, 04024.
  107. Raghuwanshi, N.S., Singh, R. and Reddy, L.S. (2006), "Runoff and Sediment Yield Modeling Using Artificial Neural Networks: Upper Siwane River, India", J. Hydrol. Eng., 11, 71-79. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(71).
  108. Ren, Q., Li, M., Zhang, M., Shen, Y. and Si, W. (2019), "Prediction of Ultimate Axial Capacity of Square Concrete-Filled Steel Tubular Short Columns Using a Hybrid Intelligent Algorithm", Appl. Sci., 9, 2802. https://doi.org/10.3390/app9142802.
  109. Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), "Learning representations by back-propagating errors", Nature, 323, 533-536. https://doi.org/10.1038/323533a0.
  110. Sakino, K. Nakahara, H., Morino, S. and Nishiyama, I., (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).
  111. Sarir, P., Chen, J., Asteris, P.G., Armaghani, D.J. and Tahir, M.M. (2019a), "Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns", Eng. Comput., https://doi.org/10.1007/s00366-019-00808-y.
  112. Sarir, P., Shen, S.L., Wang, Z.F., Chen, J., Horpibulsuk, S. and Pham, B.T. (2019b), "Optimum model for bearing capacity of concrete-steel columns with AI technology via incorporating the algorithms of IWO and ABC", Eng. Comput., 37, 797-807. https://doi.org/10.1007/s00366-019-00855-5.
  113. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125).
  114. Shakir-Khalil, H. and Mouli, M. (1990), "Further tests on concrete-filled rectangular hollow-section columns", Struct. Engineer, 68(20), 405-413.
  115. Song, T.Y., Tao, Z., Han, L.H. and Uy, B. (2017), "Bond behavior of concrete-filled steel tubes at elevated temperatures", J. Struct. Eng., 143, 04017147. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001890.
  116. Tao, Z., Han, L.H. and Wang, D.Y. (2008), "Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete", Thin-Wall. Struct., 46(10), 1113-1128, https://doi.org/10.1016/j.tws.2008.01.007.
  117. Tao, Z., Song, T.Y., Uy, B. and Han, L.H. (2016), "Bond behavior in concrete-filled steel tubes", J. Construct. Steel Res., 120, 81-93. https://doi.org/10.1016/j.jcsr.2015.12.030.
  118. Tao, Z., Uy, B., Han, L.H. and Wang, Z.B. (2009), "Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression", Thin-Wall. Struct., 47(12), 1544-1556. https://doi.org/10.1016/j.tws.2009.05.006.
  119. Taormina, R., Chau, K. and Sethi, R. (2012), "Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon", Eng. Appl. Artif. Intel., 25, 1670-1676. https://doi.org/10.1016/j.engappai.2012.02.009.
  120. Tomii, M. and Sakino, K. (1979), "Experimental studies on the ultimate moment of concrete filled square steel tubular beam-columns", Transactions Architect. Institute Japan, 275, 55-65. https://doi.org/10.3130/aijsaxx.275.0_55.
  121. Uy, B. (1998), "Local and post-local buckling of concrete filled steel welded box columns", J. Construct. Steel Res., 47(1-2), 47-72. https://doi.org/10.1016/S0143-974X(98)80102-8.
  122. Uy, B. (2000), "Strength of concrete filled steel box columns incorporating local buckling", J. Struct. Eng., 126(3), 341-352, https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(341).
  123. Vos de, N.J. and Rientjes, T.H.M. (2008), "Multiobjective training of artificial neural networks for rainfall-runoff modeling", Water Resource. Res., 44. https://doi.org/10.1029/2007WR006734.
  124. Vrcelj, Z. and Uy, B. (2002), "Behavior and design of steel square hollow sections filled with high strength concrete", Aust. J. Struct. Eng., 3(3), 153-170. https://doi.org/10.1080/13287982.2002.11464902.
  125. Wang, Z.B., Tao, Z., Han, L.H., Uy, B., Lam, D. and Kang, W.H. (2017), "Strength, stiffness and ductility of concrete-filled steel columns under axial compression", Eng. Struct., 135, 209-221. https://doi.org/10.1016/j.engstruct.2016.12.049.
  126. Wei, Z. and Han, L. (2000), "Research on the bearing capacity of early-strength concrete filled square steel tube", Proceedings 6th ASCCS Conference; Composite and Hybrid Structures, Los Angeles.
  127. Xiao, Y.F. (2012), "Approach of concrete-filled steel tube ultrasonic method based on ANN", Appl. Mech. Mater., 105, 1611-1615. https://doi.org/10.4028/www.scientific.net/AMM.105-107.1611.
  128. Xiong, M.X., Xiong, DX. and Liew, J.R. (2017), "Axial performance of short concrete filled steel tubes with high-and ultra-high-strength materials", Eng. Struct., 136, 494-510. https://doi.org/10.1016/j.engstruct.2017.01.037.
  129. Yamamoto, T., Kawaguchi, J. and Morino, S. (2000), "Experimental study of scale effects on the compressive behavior of short concrete-filled steel tube columns", Compos. Construct. Steel Concrete IV Conference, https://doi.org/10.1061/40616(281)76.
  130. Yan, J.B., Dong, X. and Wang, T. (2020), "Axial compressive behaviours of square CFST stub columns at low temperatures", J. Construct. Steel Res., 164, https://doi.org/10.1016/j.jcsr.2019.105812.
  131. Ye, Z. (2001), Compressive Behavior of High-Strength Concrete-Filled Square and Rectangular Steel Tubes, Master Thesis, Harbin Institute of Technology, Harbin.
  132. Young, B. (2008), "Experimental and numerical investigation of high strength stainless steel structures", J. Construct. Steel Res., 64, 1225-1230. https://doi.org/10.1016/j.jcsr.2008.05.004.
  133. Yu, M., Zha, X., Ye, J. and Li, Y. (2013), "A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression", Eng. Struct., 49, 1-10. https://doi.org/10.1016/j.engstruct.2012.10.018.
  134. Yu, Q., Tao, Z. and Wu, Y.X. (2008), "Experimental behaviour of high performance concrete-filled steel tubular columns", Thin-Wall. Struct., 46(4), 362-370. https://doi.org/10.1016/j.tws.2007.10.001.
  135. Yu, Z., Ding, F. and Cai, C.S. (2007), "Experimental behavior of circular concrete-filled steel tube stub columns", J. Construct. Steel Res., 63, 165-174. https://doi.org/10.1016/j.jcsr.2006.03.009.
  136. Zeng, J., Asteris, P.G., Mamou, A.P., Mohammed, A.S., Golias, E.A., Armaghani, D.J., Faizi, K.; Hasanipanah, M. (2021), "The effectiveness of ensemble-neural network techniques to predict peak uplift resistance of buried pipes in reinforced sand", Appl. Sci., 2021(11), 908. https://doi.org/10.3390/app11030908.
  137. Zhang, H., Nguyen, H., Bui, X.N., Pradhan, B., Asteris, P.G., Costache, R. and Aryal, J. (2021), "A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01272-9.
  138. Zhang, S. and Zhou, M. (2000), "Stress-strain behavior of concrete-filled square steel tubes", Proceedings 6th ASCCS Conference; Composite and Hybrid Structures, Los Angeles.
  139. Zhang, Z. (1984), Experimental Research on Short Filled Concrete Square Steel Tube Columns Under Axial Compressive Load, Master thesis, Harbin University of Technology, Harbin.
  140. Zhao, O., Rossi, B., Gardner, L. and Young, B. (2015), "Behaviour of structural stainless steel cross-sections under combined loading-Part I: Experimental study", Eng. Struct., 89, 236-246. https://doi.org/10.1016/j.engstruct.2014.11.014.
  141. Zhou, X., Zhou, Z. and Gan, D. (2020), "Analysis and design of axially loaded square CFST columns with diagonal ribs", J. Construct. Steel Res., 167, https://doi.org/10.1016/j.jcsr.2019.105848.
  142. Zhu, A., Zhang, X., Zhu, H., Zhu, J. and Lu, Y., (2017), "Experimental study of concrete filled cold-formed steel tubular stub columns", J. Construct. Steel Res., 134, 17-27. https://doi.org/10.1016/j.jcsr.2017.03.003.
  143. Zhu, J.Y. and Chan, T.M. (2018), "Experimental investigation on octagonal concrete filled steel stub columns under uniaxial compression", J. Construct. Steel Res., 147, 457-467, https://doi.org/10.1016/j.jcsr.2018.04.030.