References
- ACI 318 (2014), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, U.S.A.
- Ahmadi, M., Naderpour, H. and Kheyroddin, A. (2017). "ANN model for predicting the compressive strength of circular steel-confined concrete." International Journal of Civil Engineering, 15, 213-221. https://doi.org/10.1007/s40999-016-0096-0
- AIJ (1997), A.I. of Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures, Architectural Institute of Japan, Tokyo, Japan
- Akbar, H., Suryana, N. and Sahib, S. (2011), "Training neural networks using clonal selection algorithm and particle swarm optimization: A comparisons for 3D object recognition", 2011 11th International Conference on Hybrid Intelligent Systems (HIS), 692-697.
- Al-Khaleefi, A.M., Terro, M.J., Alex, A.P. and Wang, Y. (2002), "Prediction of fire resistance of concrete filled tubular steel columns using neural networks", Fire Safety J., 37, 339. https://doi.org/10.1016/S0379-7112(01)00065-0.
- Alavi, A.H. and Gandomi, A.H. (2012), "Energy-based numerical models for assessment of soil liquefaction", Geosci. Front., 3(4), 541-555. https://doi.org/10.1016/j.gsf.2011.12.008.
- Ali, F., Nadjai, A. and Goodfellow, N. (2016), "Experimental and numerical study on the performance of hollow and concrete-filled elliptical steel columns subjected to severe fire", Fire Mater., 40, 635-652. https://doi.org/10.1002/fam.2316.
- ANSI/AISC 360 (2016), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, U.S.A.
- Apostolopoulou, M., Armaghani, D.J., Bakolas, A., Douvika, M.G., Moropoulou, A. and Asteris, P.G. (2019), "Compressive strength of natural hydraulic lime mortars using soft computing techniques", Procedia Struct. Integrity, 17, 914-923. https://doi.org/10.1016/j.prostr.2019.08.122.
- Apostolopoulou, M., Asteris, P.G., Armaghani, D.J., Douvika, MG., Lourenco, P.B., Cavaleri, L., Bakolas, A. and Moropoulou, A. (2020), "Mapping and holistic design of natural hydraulic lime mortars", Cement Concrete Res., 136, 106167, https://doi.org/10.1016/j.cemconres.2020.106167.
- Aqil, M., Kita, I., Yano, A. and Nishiyama, S. (2007), "A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff", J. Hydrology, 337, 22-34. https://doi.org/10.1016/j.jhydrol.2007.01.013.
- Armaghani, D.J. and Asteris, P.G. (2021), "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural Comput. Appl., 33(9), 4501-4532. http://dx.doi.org/10.1007/s00521-020-05244-4
- Armaghani, D.J., Hajihassani, M., Sohaei, H., Mohamad, E.T., Marto, A., Motaghedi, H. and Moghaddam, M.R. (2015), "Neuro-fuzzy technique to predict air-overpressure induced by blasting", Arab. J. Geosci., 8(12), 10937-10950. https://doi.org/10.1007/s12517-015-1984-3.
- Armaghani, D.J., Mamou, A., Maraveas, C., Roussis, P.C., Siorikis, V.G., Skentou, A.D. and Asteris, P.G. (2021), "Predicting the unconfined compressive strength of granite using only two nondestructive test indexes", Geomech. Eng., 25(4).
- Armaghani, D.J., Momeni, E. and Asteris, P.G. (2020), "Application of group method of data handling technique in assessing deformation of rock mass", Metaheuristic Comput. Appl., 1(1), 1-18. http://dx.doi.org/10.12989/mca.2020.1.1.001.
- AS5100 (2004), Australian Standard - Bridge Design, Part 6: Steel and Composite Construction, Standards Australia International, Sydney, Australia
- Aslani, F., Uy, B., Tao, Z. and Mashiri, F., (2015), "Behaviour and design of composite columns incorporating compact high-strength steel plates", J. Construct. Steel Res., 107, 94-110, https://doi.org/10.1016/j.jcsr.2015.01.005.
- Asteris, P.G and Mokos, V.G. (2020), "Concrete compressive strength using artificial neural networks", Neural Comput. Appl., 32, 1807-11826. https://doi.org/10.1007/s00521-019-04663-2.
- Asteris, P.G., Apostolopoulou, M., Skentou, A.D. and Moropoulou, A. (2019), "Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars", Comput. Concrete, 24, 329-345. 10.12989/cac.2019.24.4.329.
- Asteris, P.G., Lemonis, M.E., Le, T.T. and Tsavdaridis, K.D. (2021c), "Evaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modeling", Eng. Struct., 248, 113297, https://doi.org/10.1016/j.engstruct.2021.113297.
- Asteris, P.G., Lemonis, M.E., Nguyen, T.A., Le, H.V. and Pham, B.T. (2021a). "Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes", Steel Compos. Struct., 39(4), 471-491. https://doi.org/10.12989/scs.2021.39.4.471.
- Asteris, P.G., Lourenco, P.B., Hajihassani, M., Adami, C.E.N., Lemonis, M.E., Skentou, A.D., Marques, R., Nguyen, H., Rodrigues, H. and Varum, H. (2021d), "Soft computing based models for the prediction of masonry compressive strength", Eng. Struct., 248, 113276, https://doi.org/10.1016/j.engstruct.2021.113276.
- Asteris, P.G., Skentou, A.D., Bardhan, A., Samui, P., Pilakoutas, K. (2021b), "Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models", Cement Concrete Res., 2021, 145, 106449, https://doi.org/10.1016/j.cemconres.2021.106449.
- Baig, M.N., Fan, J. and Nie, J. (2006), "Strength of concrete filled steel tubular columns", Tsinghua Science Technol., 11, 657-666. https://doi.org/10.1016/S1007-0214(06)70248-6
- Battiti, R. (1992), "First- and second-order methods for learning: Between steepest descent and newton's method." Neural Comput., 4, 141-166. https://doi.org/10.1162/neco.1992.4.2.141.
- Behnam, A. and Esfahani, M.R. (2018). "Prediction of biaxial bending behavior of steel-concrete composite beam-columns by artificial neural network", Iran Univ. Sci. Technol., 8, 381-399.
- Bradford, M.A., Loh, H.Y. and Uy, B. (2002), "Slenderness limits for filled circular steel tubes", J. Construct. Steel Res., 58, 243-252. https://doi.org/10.1016/S0143-974X(01)00043-8.
- Brownlee, J. (2016), Master Machine Learning Algorithms: Discover How They Work and Implement Them From Scratch, https://books.google.ca/books.
- Caprili, S. and Salvatore, W. (2015), "Cyclic behaviour of uncorroded and corroded steel reinforcing bars", Construct. Build. Mater., 76, 168-186. https://doi.org/10.1016/j.conbuildmat.2014.11.025.
- Cederwall, K., Engstrom, B. and Grauers, M., (1990), "High-Strength Concrete Used in Composite Columns", ACI Symposium Publication, 121, 195-214.
- Chang, X., Wei, Y.Y. and Yun, Y.C. (2012), "Analysis of steel-reinforced concrete-filled-steel tubular (SRCFST) columns under cyclic loading", Construct. Build. Mater. 28, 88-95. https://doi.org/10.1016/j.conbuildmat.2011.08.033.
- Chen, J. and Jin, W., (2010), "Experimental investigation of thin-walled complex section concrete-filled steel stub columns", Thin-Wall. truct. 48(9), 718-724, https://doi.org/10.1016/j.tws.2010.05.001.
- Chen, S., Zhang, R., Jia, LJ., Wang, JY. and Gu, P., (2018), "Structural behavior of UHPC filled steel tube columns under axial loading", Thin-Wall. Struct., 130, 550-563, https://doi.org/10.1016/j.tws.2018.06.016.
- Choi, K.K. and Xiao, Y. (2009). "Analytical studies of concrete-filled circular steel tubes under axial compression", J. Struct. Eng., 136, 565-573. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000156.
- Chung, J., Matsui, C. and Tsuda, K., (2001), "Simplified design formula of slender concrete filled steel tubular beam-columns", Struct. Eng. Mech., 12(1), 71-84, https://doi.org/10.12989/sem.2001.12.1.071.
- Dai, X. and Lam, D. (2010), "Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns", J. Construct. Steel Res., 66, 931-942. https://doi.org/10.1016/j.jcsr.2010.02.003.
- DBJ13-51-2010 (2010), Technical Specification for Concrete-filled Steel Tubular Structures, The Construction Department of Fujian Province, Fuzhou, China
- Du, K.L. and Swamy, M.N. (2013), Neural Networks and Statistical Learning, Springer Science & Business Media.
- Du, Y., Chen, Z. and Xiong, M.X., (2016), "Experimental behavior and design method of rectangular concrete-filled tubular columns using Q460 high-strength steel", Construct. Build. Mater., 125, 856-872, https://doi.org/10.1016/j.conbuildmat.2016.08.057.
- Du, Y., Chen, Z. and Yu, Y., (2016), "Behavior of rectangular concrete-filled high-strength steel tubular columns with different aspect ratio", Thin-Wall. Struct., 109, 304-318, https://doi.org/10.1016/j.tws.2016.10.005.
- Du, Y., Chen, Z., Zhang, C. and Cao, X. (2017), "Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks", Front. Comput. Sci., 11, 863-873. https://doi.org/10.1007/s11704-016-5113-6.
- Dundu, M., (2016), "Column buckling tests of hot-rolled concrete filled square hollow sections of mild to high strength steel", Eng. Struct., 127, 73-85, https://doi.org/10.1016/j.engstruct.2016.08.039.
- Duong, H.T., Phan, H.C., Le, T.T. and Bui, N.D. (2020), "Optimization design of rectangular concrete-filled steel tube short columns with Balancing Composite Motion Optimization and data-driven model", Struct., 28, 757-765. https://doi.org/10.1016/j.istruc.2020.09.013.
- EN1994 (2004), Eurocode 4 - Design of composite steel and concrete structures - Part 1-1: General Rules and Rules for Buildings, CEN, Brussels, Belgium.
- Fam, A., Qie, F.S. and Rizkalla, S. (2004), "Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads", J. Struct. Eng., 130, 631-640. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(631).
- Furlong, R.W., (1967), "Strength of steel-encased concrete beam columns", J. Struct. Div., 93(5), 113-124. https://doi.org/10.1061/JSDEAG.0001761.
- Ghannam, S., Jawad, Y.A. and Hunaiti, Y. (2004), "Failure of lightweight aggregate concrete-filled steel tubular columns", Steel Compos. Struct., 4(1), 1-8. https://doi.org/10.12989/scs.2004.4.1.001.
- Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Construct. Steel Res., 60, 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
- Goel, T. and Tiwary, A. (2018), "Finite element modeling of Circular Concrete Filled Steel Tube (CFST)", Indian J. Sci. Technol., 11, 1-9. https://doi.org/10.17485/ijst/2018/v11i34/130853.
- Grauers, M. (1993), Composite Columns of Hollow Steel Sections Filled with High Strength Concrete, Ph.D. Dissertation, Chalmers University of Technology, Goteborg.
- Guo, L. (2006), Theoretical and Experimental Research on the Behavior of Concrete-Filled Rectangular Hollow Section Steel Tubes, PhD Dissertation, Harbin Institute of Technology, Harbin.
- Guo, L., Zhang, S., Wang, Y. and Liu, J., (2005), "Analytical and experimental research on axially loaded slender HSC filled RHS steel tubular columns", Indus. Construct., 35(3),75-79. https://doi.org/10.3321/j.issn:1000-8993.2005.03.026
- Guo, L.H., Zhang, S.M. and Kim, W.J., (2006), "Elastic and elastic-plastic buckling behavior of SHS steel tube filled with concrete", Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 38(8), 1350-1354.
- Gupta, R., Gijzen van, M.B. and Vuik, C.K. (2013), "Efficient Two-Level Preconditioned Conjugate Gradient Method on the GPU", In High Performance Computing for Computational Science - VECPAR 2012, 36-49. Springer, Berlin. https://doi.org/10.1007/978-3-642-38718-0_7.
- Han, L.H, Yao, G.H. and Zhao, X.L. (2005), "Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)", J. Construct. Steel Res., 61(9), 1241-1269. https://doi.org/10.1016/j.jcsr.2005.01.004.
- Han, L.H. (2002), "Tests on stub columns of concrete-filled RHS sections", J. Construct. Steel Res., 58(3), 353-372. https://doi.org/10.1016/S0143-974X(01)00059-1.
- Han, L.H. and Yang, Y.F. (2001), "Influence of concrete compaction on the behavior of concrete filled steel tubes with rectangular sections", Adv. Struct. Eng., 4, 93-100. https://doi.org/10.1260/1369433011502381.
- Han, L.H. and Yang, Y.F., (2003), "Analysis of thin-walled steel RHS columns filled with concrete under long-term sustained loads", Thin-Wall. Struct., 41(9), 849-870. https://doi.org/10.1016/S0263-8231(03)00029-6.
- Han, L.H. and Yao, G.H. (2003), "Influence of concrete compaction on the strength of concrete-filled steel RHS columns", J. Construct. Steel Res., 59(6), 751-767. https://doi.org/10.1016/S0143-974X(02)00076-7.
- Han, L.H. and Yao, G.H. (2004), "Experimental behavior of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC)", Thin-Wall. Struct., 42(9), 1357-1377, https://doi.org/10.1016/j.tws.2004.03.016.
- Han, L.H. and Yao, G.H., (2003), "Behavior of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes", J. Construct. Steel Res., 59(12), 1455-1475, https://doi.org/10.1016/S0143-974X(03)00102-0.
- Han, L.H., Hou, C. and Wang, Q.L. (2012), "Square concrete filled steel tubular (CFST) members under loading and chloride corrosion: experiments", J. Construct. Steel Res., 71, 11-25. https://doi.org/10.1016/j.jcsr.2011.11.012.
- Han, L.H., Huo, J.S. and Wang, Y.C. (2005), "Compressive and flexural behaviour of concrete filled steel tubes after exposure to standard fire", J. Construct. Steel Res., 61, 882-901. https://doi.org/10.1016/j.jcsr.2004.12.005.
- Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Construct. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
- Ho, N.X. and Le, T.T. (2021), "Effects of variability in experimental database on machine-learning-based prediction of ultimate load of circular concrete-filled steel tubes", Measurement, 176, 109198. https://doi.org/10.1016/j.measurement.2021.109198.
- Hossain, K.M.A. and Chu, K, (2019), "Confinement of six different concretes in CFST columns having different shapes and slenderness", Int. J. Adv. Struct. Eng., 11, 255-270. https://doi.org/10.1007/s40091-019-0228-2.
- Huang, L., Asteris, P.G., Koopialipoor, M., Armaghani, D.J. and Tahir, M.M. (2019), "Invasive weed optimization technique-based ANN to the rediction of rock tensile strength", Appl. Sci. 9, 5372. https://doi.org/10.3390/app9245372.
- Huang, Z., Uy, B., Li, D. and Wang, J., (2020), "Behavior and design of ultra-high-strength CFST members subjected to compression and bending", J. Construct. Steel Res., 175. https://doi.org/10.1016/j.jcsr.2020.106351.
- Ibanez, C., Hernandez-Figueirido, D. and Piquer, A. (2018), "Shape effect on axially loaded high strength CFST stub columns", J. Construct. Steel Res., 147, 247-256, https://doi.org/10.1016/j.jcsr.2018.04.005.
- Ibanez, C., Hernandez-Figueirido, D. and Piquer, A. (2021), "Effect of steel tube thickness on the behaviour of CFST columns: Experimental tests and design assessment", Eng. Struct., 230, 111687. https://doi.org/10.1016/j.engstruct.2020.111687.
- Ibanez, C., Hernandez-Figueirido, D. and Piquer, A. (2021), "Effect of steel tube thickness on the behaviour of CFST columns: Experimental tests and design assessment", Eng. Struct., 230. https://doi.org/10.1016/j.engstruct.2020.111687.
- Inai, E. and Sakino, K. (1996), "Simulation of flexural behavior of square concrete filled steel tubular columns", Proceedings of the Third Joint Technical Coordinating Committee Meeting, U.S.-Japan Cooperative Research Program, Phase 5: Composite and Hybrid Structures, Hong Kong, National Science Foundation, Arlington, Virginia.
- Islam, M.M., Ali, R.B., Begum, M. and Rahman M.S. (2021), "Experimental study of square concrete-filled welded cold-formed steel columns under concentric Loading", Arab. J. Sci. Eng. 46, 4225-4237. https://doi.org/10.1007/s13369-020-04797-9.
- Jegadesh, J. and Jayalekshmi, S. (2015), "A review on artificial neural network concepts in structural engineering applications", Int. J. Appl. Civil Environ. Eng., 1, 6-11.
- Jegadesh, S. and Jayalekshmi, S. (2015b), "Application of artificial neural network for calculation of axial capacity of circular concrete filled steel Tubular Columns", Int. J. Earth Sci. Eng., 8, 35-42.
- Kayacan, E. and Khanesar, M.A. (2015), Fuzzy Neural Networks for Real Time Control Applications: Concepts, Modeling and Algorithms for Fast Learning. 1. Butterworth-Heinemann.
- Kechagias, J., Tsiolikas, A., Asteris, P. and Vaxevanidis, N. (2018), "Optimizing ANN performance using DOE: Application on turning of a titanium alloy", MATEC Web of Conferences, 178, 01017.
- Khan, M., Uy, B., Tao, Z. and Mashiri, F. (2017), "Behaviour and design of short high-strength steel welded box and concrete-filled tube (CFT) sections", Eng. Struct., 147, 458-472. https://doi.org/10.1016/j.engstruct.2017.06.016.
- Khan, M., Uy, B., Tao, Z. and Mashiri, F., (2017), "Concentrically loaded slender square hollow and composite columns incorporating high strength properties", Eng. Struct., 131, 69-89. https://doi.org/10.1016/j.engstruct.2016.10.015.
- Khanouki, M.M.A., Ramli Sulong, N.H., Shariati, M. and Tahir, M.M. (2016), "Investigation of through beam connection to concrete filled circular steel tube (CFCST) column", J. Construct. Steel Res., 121, 144-162. https://doi.org/10.1016/j.jcsr.2016.01.002.
- Knowles, R.B. and Park, R. (1969), "Strength of concrete filled steel tubular columns", J. Struct. Div., 95(12), 2565-2588. https://doi.org/10.1061/JSDEAG.0002425.
- Krishan, A.L., Chernyshova, E.P. and Sabirov, R.R. (2016), "Calculating the strength of concrete filled steel tube columns of solid and ring cross-section", Procedia Engineering, 150, 1878-1884. https://doi.org/10.1016/j.proeng.2016.07.186.
- Lam, D. and Williams, C.A. (2004), "Experimental study on concrete filled square hollow sections", Steel Compos. Struct., 4(2), 95-112, https://doi.org/10.12989/scs.2004.4.2.095.
- Liew, JR., Xiong, M. and Xiong, D. (2016), "Design of concrete filled tubular beam-columns with high strength steel and concrete", Structures, 8, 213-226. https://doi.org/10.1016/j.istruc.2016.05.005.
- Lin, C.Y. (1988), "Axial capacity of concrete infilled cold-formed steel columns", Ninth International Specialty Conference on Cold-Formed Steel Structures, St. Louis, Missouri, U.S.A.
- Liu, D. (2005), "Tests on high-strength rectangular concrete-filled steel hollow section stub columns", J. Construct. Steel Res., 61(7), 902-911. https://doi.org/10.1016/j.jcsr.2005.01.001.
- Liu, D. and Gho, W.M. (2005), "Axial load behavior of high-strength rectangular concrete-filled steel tubular stub columns", Thin-Wall. Struct., 43(8), 1131-1142. https://doi.org/10.1016/j.tws.2005.03.007.
- Liu, D., Gho, W.M. and Yuan, J. (2003), "Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns", J. Construct. Steel Res., 59(12), 1499-1515. https://doi.org/10.1016/S0143-974X(03)00106-8.
- Liu, S., Ding, X., Li, X., Liu, Y. and Zhao, S. (2019), "Behavior of rectangular-sectional steel tubular columns filled with high-strength steel fiber reinforced concrete under axial compression", Materials, 12, 2716. https://doi.org/10.3390/ma12172716.
- Lourakis, M.I.A. (2005), "A brief description of the Levenberg-Marquardt algorithm implemented by levmar", Hellas (FORTH), Institute of Computer Science Foundation for Research and Technology, http://www.ics.forth.gr/~lourakis/levmar/levmar.
- Lu, D., Gong, Y., Ding, F., Wang, L., Deng, C., Yuan, T., Chen, L. and Ren, E. (2021), "Experimental study of square CFST stub columns with a low steel ratio under axial loading", Front. Materials, 8(52), https://doi.org/10.3389/fmats.2021.629819.
- Lu, Y.Q. and Kennedy, D.J.L. (1994), "The flexural behavior of concrete-filled hollow structural sections", Can. J. Civ. Eng., 21(1), 111-130. https://doi.org/10.1139/l94-011.
- Lu, X., Yu, Y. and Chen, Y., (1999), "Studies on the behavior of concrete-filled rectangular tubular short column: 1 Experiment", Build. Struct., 29(10), 41-43.
- Lue, D.M., Liu, J.L. and Yen, T. (2007), "Experimental study on rectangular CFT columns with high-strength concrete", J. Construct. Steel Res., 63(1), 37-44. https://doi.org/10.1016/j.jcsr.2006.03.007.
- Luo, L. (1986), Experimental Research on Long Filled Concrete Square Steel Tube Columns Under Axial Compressive Load, Masters Thesis, Zhengzhou University of Technology. Zhengzhou.
- Ly, H.B., Pham, B.T., Le, L.M., Le, T.T., Le, V.M. and Asteris, P.G. (2021), "Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models", Neural Comput. Appl., 33(8), 3437-3458. https://doi.org/10.1007/s00521-020-05214-w.
- Marquardt, D. (1963), "An algorithm for least-squares estimation of nonlinear parameters", J. Soc. Ind. Appl. Mathem., 11, 431-441. https://doi.org/10.1137/0111030.
- Matsui, C. and Tsuda, K. (1996), "Strength and behavior of slender concrete filled steel tubular columns", Proceedings of The Second International Symposium on Civil Infrastructure Systems. Hong Kong, China.
- Matsui, C., Tsuda, K. and Ishibashi, Y. (1995), "Slender concrete filled steel tubular columns under combined compression and bending", Structural Steel, PSSC95, 4th Pacific Structural Steel Conference, 3, Singapore.
- Moller, M.F. (1993), "A scaled conjugate gradient algorithm for fast supervised learning", Neural Networks, 6, 525-533. https://doi.org/10.1016/S0893-6080(05)80056-5.
- Momeni, E., Armaghani, D.J., Hajihassani, M. and Amin, M.F.M. (2015), "Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks", Measurement, 60, 50-63. https://doi.org/10.1016/j.measurement.2014.09.075.
- Mursi, M. and Uy, B. (2004), "Strength of slender concrete filled high strength steel box columns", J. Construct. Steel Res., 60(12), 1825-1848. https://doi.org/10.1016/j.jcsr.2004.05.002.
- Nakahara, H. and Sakino, K. (1998), "Axial compressive and uniform bending tests of high strength concrete filled square steel tubular columns", Proceedings of the Fifth Pacific Structural Steel Conference, Seoul, Korea.
- Nguyen, T.T., Thai, H.T., Ngo, T., Uy, B. and Li, D. (2021), "Behavior and design of high strength CFST columns with slender sections", J. Construct. Steel Res., 182, https://doi.org/10.1016/j.jcsr.2021.106645.
- Powell, M.J.D. (1977), "Restart procedures for the conjugate gradient method", Mathematical Programming, 12, 241-254. https://doi.org/10.1007/BF01593790.
- Psyllaki, P., Stamatiou, K., Iliadis, I., Mourlas, A., Asteris, P. and Vaxevanidis, N. (2018), "Surface treatment of tool steels against galling failure", MATEC Web of Conferences, 188, 04024.
- Raghuwanshi, N.S., Singh, R. and Reddy, L.S. (2006), "Runoff and Sediment Yield Modeling Using Artificial Neural Networks: Upper Siwane River, India", J. Hydrol. Eng., 11, 71-79. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(71).
- Ren, Q., Li, M., Zhang, M., Shen, Y. and Si, W. (2019), "Prediction of Ultimate Axial Capacity of Square Concrete-Filled Steel Tubular Short Columns Using a Hybrid Intelligent Algorithm", Appl. Sci., 9, 2802. https://doi.org/10.3390/app9142802.
- Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986), "Learning representations by back-propagating errors", Nature, 323, 533-536. https://doi.org/10.1038/323533a0.
- Sakino, K. Nakahara, H., Morino, S. and Nishiyama, I., (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).
- Sarir, P., Chen, J., Asteris, P.G., Armaghani, D.J. and Tahir, M.M. (2019a), "Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns", Eng. Comput., https://doi.org/10.1007/s00366-019-00808-y.
- Sarir, P., Shen, S.L., Wang, Z.F., Chen, J., Horpibulsuk, S. and Pham, B.T. (2019b), "Optimum model for bearing capacity of concrete-steel columns with AI technology via incorporating the algorithms of IWO and ABC", Eng. Comput., 37, 797-807. https://doi.org/10.1007/s00366-019-00855-5.
- Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125).
- Shakir-Khalil, H. and Mouli, M. (1990), "Further tests on concrete-filled rectangular hollow-section columns", Struct. Engineer, 68(20), 405-413.
- Song, T.Y., Tao, Z., Han, L.H. and Uy, B. (2017), "Bond behavior of concrete-filled steel tubes at elevated temperatures", J. Struct. Eng., 143, 04017147. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001890.
- Tao, Z., Han, L.H. and Wang, D.Y. (2008), "Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete", Thin-Wall. Struct., 46(10), 1113-1128, https://doi.org/10.1016/j.tws.2008.01.007.
- Tao, Z., Song, T.Y., Uy, B. and Han, L.H. (2016), "Bond behavior in concrete-filled steel tubes", J. Construct. Steel Res., 120, 81-93. https://doi.org/10.1016/j.jcsr.2015.12.030.
- Tao, Z., Uy, B., Han, L.H. and Wang, Z.B. (2009), "Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression", Thin-Wall. Struct., 47(12), 1544-1556. https://doi.org/10.1016/j.tws.2009.05.006.
- Taormina, R., Chau, K. and Sethi, R. (2012), "Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon", Eng. Appl. Artif. Intel., 25, 1670-1676. https://doi.org/10.1016/j.engappai.2012.02.009.
- Tomii, M. and Sakino, K. (1979), "Experimental studies on the ultimate moment of concrete filled square steel tubular beam-columns", Transactions Architect. Institute Japan, 275, 55-65. https://doi.org/10.3130/aijsaxx.275.0_55.
- Uy, B. (1998), "Local and post-local buckling of concrete filled steel welded box columns", J. Construct. Steel Res., 47(1-2), 47-72. https://doi.org/10.1016/S0143-974X(98)80102-8.
- Uy, B. (2000), "Strength of concrete filled steel box columns incorporating local buckling", J. Struct. Eng., 126(3), 341-352, https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(341).
- Vos de, N.J. and Rientjes, T.H.M. (2008), "Multiobjective training of artificial neural networks for rainfall-runoff modeling", Water Resource. Res., 44. https://doi.org/10.1029/2007WR006734.
- Vrcelj, Z. and Uy, B. (2002), "Behavior and design of steel square hollow sections filled with high strength concrete", Aust. J. Struct. Eng., 3(3), 153-170. https://doi.org/10.1080/13287982.2002.11464902.
- Wang, Z.B., Tao, Z., Han, L.H., Uy, B., Lam, D. and Kang, W.H. (2017), "Strength, stiffness and ductility of concrete-filled steel columns under axial compression", Eng. Struct., 135, 209-221. https://doi.org/10.1016/j.engstruct.2016.12.049.
- Wei, Z. and Han, L. (2000), "Research on the bearing capacity of early-strength concrete filled square steel tube", Proceedings 6th ASCCS Conference; Composite and Hybrid Structures, Los Angeles.
- Xiao, Y.F. (2012), "Approach of concrete-filled steel tube ultrasonic method based on ANN", Appl. Mech. Mater., 105, 1611-1615. https://doi.org/10.4028/www.scientific.net/AMM.105-107.1611.
- Xiong, M.X., Xiong, DX. and Liew, J.R. (2017), "Axial performance of short concrete filled steel tubes with high-and ultra-high-strength materials", Eng. Struct., 136, 494-510. https://doi.org/10.1016/j.engstruct.2017.01.037.
- Yamamoto, T., Kawaguchi, J. and Morino, S. (2000), "Experimental study of scale effects on the compressive behavior of short concrete-filled steel tube columns", Compos. Construct. Steel Concrete IV Conference, https://doi.org/10.1061/40616(281)76.
- Yan, J.B., Dong, X. and Wang, T. (2020), "Axial compressive behaviours of square CFST stub columns at low temperatures", J. Construct. Steel Res., 164, https://doi.org/10.1016/j.jcsr.2019.105812.
- Ye, Z. (2001), Compressive Behavior of High-Strength Concrete-Filled Square and Rectangular Steel Tubes, Master Thesis, Harbin Institute of Technology, Harbin.
- Young, B. (2008), "Experimental and numerical investigation of high strength stainless steel structures", J. Construct. Steel Res., 64, 1225-1230. https://doi.org/10.1016/j.jcsr.2008.05.004.
- Yu, M., Zha, X., Ye, J. and Li, Y. (2013), "A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression", Eng. Struct., 49, 1-10. https://doi.org/10.1016/j.engstruct.2012.10.018.
- Yu, Q., Tao, Z. and Wu, Y.X. (2008), "Experimental behaviour of high performance concrete-filled steel tubular columns", Thin-Wall. Struct., 46(4), 362-370. https://doi.org/10.1016/j.tws.2007.10.001.
- Yu, Z., Ding, F. and Cai, C.S. (2007), "Experimental behavior of circular concrete-filled steel tube stub columns", J. Construct. Steel Res., 63, 165-174. https://doi.org/10.1016/j.jcsr.2006.03.009.
- Zeng, J., Asteris, P.G., Mamou, A.P., Mohammed, A.S., Golias, E.A., Armaghani, D.J., Faizi, K.; Hasanipanah, M. (2021), "The effectiveness of ensemble-neural network techniques to predict peak uplift resistance of buried pipes in reinforced sand", Appl. Sci., 2021(11), 908. https://doi.org/10.3390/app11030908.
- Zhang, H., Nguyen, H., Bui, X.N., Pradhan, B., Asteris, P.G., Costache, R. and Aryal, J. (2021), "A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01272-9.
- Zhang, S. and Zhou, M. (2000), "Stress-strain behavior of concrete-filled square steel tubes", Proceedings 6th ASCCS Conference; Composite and Hybrid Structures, Los Angeles.
- Zhang, Z. (1984), Experimental Research on Short Filled Concrete Square Steel Tube Columns Under Axial Compressive Load, Master thesis, Harbin University of Technology, Harbin.
- Zhao, O., Rossi, B., Gardner, L. and Young, B. (2015), "Behaviour of structural stainless steel cross-sections under combined loading-Part I: Experimental study", Eng. Struct., 89, 236-246. https://doi.org/10.1016/j.engstruct.2014.11.014.
- Zhou, X., Zhou, Z. and Gan, D. (2020), "Analysis and design of axially loaded square CFST columns with diagonal ribs", J. Construct. Steel Res., 167, https://doi.org/10.1016/j.jcsr.2019.105848.
- Zhu, A., Zhang, X., Zhu, H., Zhu, J. and Lu, Y., (2017), "Experimental study of concrete filled cold-formed steel tubular stub columns", J. Construct. Steel Res., 134, 17-27. https://doi.org/10.1016/j.jcsr.2017.03.003.
- Zhu, J.Y. and Chan, T.M. (2018), "Experimental investigation on octagonal concrete filled steel stub columns under uniaxial compression", J. Construct. Steel Res., 147, 457-467, https://doi.org/10.1016/j.jcsr.2018.04.030.