Acknowledgement
This research work was supported by the Deanship of Scientific Research at King Abdul Aziz University under Grant number G:529-135-1442.
References
- Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
- Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
- Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stab. Dyn., 17(03), 1750033. https://doi.org/10.1142/S021945541750033X.
- Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(07), 1750100. https://doi.org/10.1142/S1758825117501009.
- Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.
- Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39. https://doi.org/10.12989/anr.2018.6.1.039.
- Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219. http://doi.org/10.12989/anr.2018.6.3.219.
- Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. http://doi.org/10.22059/jcamech.2019.281285.392.
- Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277. https://doi.org/10.12989/anr.2020.8.4.277.
- Ansari, R. and Arash, B. (2013), "Nonlocal Flugge shell model for vibrations of double-walled carbon nanotubes with different boundary conditions", J. Appl. Mech., 80(2), 021006. https://doi.org/10.1115/1.4007432.
- Ansari, R. and Rouhi, H. (2013), "Nonlocal analytical Flugge shell model for the vibrations of double-walled carbon nanotubes with different end conditions", Int. J. Appl. Mech., 80(2), 021006. https://doi.org/10.1142/S179329201250018X.
- Arani, Jafarian A. and Kolahchi R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput Concr., 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale effects on mechanical and buckling properties of zigzag double-walled carbon nanotubes", Composites Part B, 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020.
- Bilouei, Safari B, Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
- Brischotto, S. (2015), "A continuum shell model including van der Waals interaction for free vibrations of double-walled carbon nanotubes", CMES, 104, 305-327.
- Civalek, O. (2020), "Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometric transformation discrete singular convolution method", Int. J. Numer. Meth. Eng., 121(5), 990-1019. https://doi.org/10.1002/nme.6254.
- Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mechanica, 231(6), 2565-2587. https://doi.org/10.1007/s00707-020-02653-3.
- Elshabasy, M.M. and Kouritem, S.A. (2020), "Thickening of optimally selected locations on panels subjected to unyawed flow for substantial delay of the panel flutter", Alexandria Eng. J., 59(6), 5031-5044. https://doi.org/10.1016/j.aej.2020.09.026.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media.
- Fazilati, J. (2018), "Stability of tow-steered curved panels with geometrical defects using higher order FSM", Steel Compos. Struct., 28(1), 25-37. https://doi.org/10.12989/scs.2018.28.1.025.
- Flugge, S. (1973), Stresses in Shells, Springer, Berlin.
- Gao, S., Peng, Z., Wang, X. and Liu, J. (2019), "Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion", Steel Compos. Struct., 33(4), 615-627. https://doi.org/10.12989/scs.2019.33.4.615.
- Gao, Y. and An, L. (2010), "A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm", Physica E: Low-dimensional Syst. Nanostruct., 42(9), 2406-2415. https://doi.org/10.1016/j.physe.2010.05.022.
- Ghavanloo, E., Daneshmand, F. and Rafiei, M. (2010), "Vibration and instability analysis of carbon nanotubes conveying fluid and resting on a linear viscous elastic Winkler foundation", Physica E, 42, 2218-2224. https://doi.org/10.1016/j.physe.2010.04.024.
- Gibson, R.F., Ayorinde, E.O. and Wen, Y.F. (2007), "Vibrations of carbon nanotubes and their composites: a review", Compos. Sci. Technol., 67(1), 1-28. https://doi.org/10.1016/j.compscitech.2006.03.031.
- Gupta, S.S., Bosco, F.G. and Batra, R.C. (2010), "Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration", Comput. Mater. Sci., 47(4), 1049-1059. https://doi.org/10.1016/j.commatsci.2009.12.007.
- He, X.Q., Kitipornchai, S. and Liew, K.M. (2005), "Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction", J. Mech. Phys. Solids, 53, 303-326. https://doi.org/10.1016/j.jmps.2004.08.003.
- Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. https://doi.org/10.1016/j.compstruct.2014.06.023.
- Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phy. Solids, 56, 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010.
- Hussain, M., Naeem., M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.
- Jafari, S. (2018), "Engineering applications of carbon nanotubes", Carbon Nanotube-Reinforced Polymers, 25-40. https://doi.org/10.1016/B978-0-323-48221-9.00002-9.
- Kouritem, S.A. and Elshabasy, M.M. (2021), "Tailoring the panel inertial and elastic forces for the flutter and stability characteristics enhancement using copper patches", Compos. Struct., 274, 114311. https://doi.org/10.1016/j.compstruct.2021.114311.
- Kroner, E. (1967), "Elasticity theory of materials with long range cohesive forces", Int. J. Solids Struct., 3(5), 731-742. https://doi.org/10.1016/0020-7683(67)90049-2.
- Lam, K.Y. and Loy, C.T. (1994), "On vibrations of thin rotating laminated composite cylindrical shells", Compos. Eng., 4(11), 1153-1167. https://doi.org/10.1016/0961-9526(95)91289-S.
- Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41, 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
- Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNTreinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
- Narendar, S. (2011), "Terahertz wave propagation in uniform nanorods: A nonlocal continuum mechanics formulation including the effect of lateral inertia", Physica E, 43, 1015-1020. https://doi.org/10.1016/j.physe.2010.12.004.
- Natsuki, T., Qing, Q.N. and Morinobu, E. (2007), "Wave propagation in single-walled and double-walled carbon nanotubes filled with fluids", J. Appl. Phys., 101(3), 034319-034319-5. https://doi.org/10.1063/1.2432025.
- Paliwal, D.N., Kanagasabapathy, H. and Gupta, K.M. (1995), "The large deflection of an orthotropic cylindrical shell on a Pasternak foundation", Compos. Struct., 31(1), 31-37. https://doi.org/10.1016/0263-8223(94)00068-9.
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of Nonlocal Continuum Models to Nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.
- Rouhi, H., Ansari, R. and Arash, B. (2012), "Vibration analysis of double-walled carbon nanotubes based on the non-local donnell shell via a new numerical approach", Int. J. Mech. Sci., 37, 91-105. https://doi.org/10.1016/0020-7403(94)00042-I
- Safeer, M., Taj, M. and Abbas, S.S. (2019), "Effect of viscoelastic medium on wave propagation along protein microtubules", AIP Adv., 9(4), 045108. https://doi.org/10.1016/0263-8223(94)00068-9.
- Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
- Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445.
- Selmi, A., Friebel, C., Doghri, I. and Hassis, H. (2007), "Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: A comparative study of several micromechanical models", Compos. Sci. Technol., 67(10), 2071-2084. https://doi.org/10.1016/j.compscitech.2006.11.016.
- Selmi, A., Hassis, H., Zenzri, H. and Doghri, I. (2014), "A Cosserat-type plate theory and its application to carbon nanotube microstructure", Amer. J. Appl. Sci., 11(8), 1255. https://doi.org/10.3844/ajassp.2014.1255.1273.
- Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E, 43, 182-191. https://doi.org/10.12989/scs.2011.11.1.059.
- Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
- Soldatos, K.P. (1984), "A comparison of some shell theories used for the dynamic analysis of cross-ply laminated circular cylindrical panels", J. Sound Vib., 97, 305-319. https://doi.org/10.1016/0022-460X(84)90324-9.
- Sun, S., Cao, D. and Chu, S. (2013), "Free vibration analysis of thin rotating cylindrical shells using wave propagation approach", Arch. Appl. Mech., 83(4), 521-531. https://doi.org/10.1007/s00419-012-0701-x.
- Swain, A., Roy, T. and Nanda, B.K. (2013), "Vibration behavior of single-walled carbon nanotube using finite element", Int. J. Theor. And Appl. Res. in Mech. Eng., 2, 129-133.
- Taiyari, F., Mazzolani, F.M. and Bagheri, S. (2019), "Seismic performance assessment of steel building frames equipped with a novel type of bending dissipative braces", Steel Compos. Struct., 33(4), 525-535. https://doi.org/10.12989/scs.2019.33.4.525.
- Usuki, T. and Yogo, K. (2009), "Beam equations for multi-walled carbon nanotubes derived from Flugge shell theory", Proceedings Royal Soc. A., 465. https://doi.org/10.1098/rspa.2008.0394
- Wang, J. and Gao, Y. (2016), "Nonlocal orthotropic shell model applied on wave propagation in microtubules", Appl. Mathem. Modelling, 40(11-12), 5731-5744. https://doi.org/10.1016/j.apm.2016.01.013.
- Wang, Q. and Varadan, V.K. (2006), "Vibration of carbon nanotubes studied using nonlocal continuum mechanics", Smart Mater. Struct., 15(2), 659. https://doi.org/10.1088/0964-1726/16/1/022.
- Xu, K.U., Aifantis, E.C. and Yan, Y.H. (2008), "Vibrations of double-walled carbon nanotubes with different boundary conditions between inner and outer tubes", J. Appl. Mech., 75(2), 021013-1. https://doi.org/10.1115/1.2793133.
- Yan, J.B., Dong, X. and Wang, T. (2020), "Flexural performance of double skin composite beams at the Arctic low temperature", Steel Compos. Struct., 37(4), 431-446. https://doi.org/10.12989/scs.2020.37.4.431.
- Yang, J., Ke, L. L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E: Low-dimensional Syst. Nanostruct, 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035.
- Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
- Yoon, J., Ru, C.Q. and Mioduchowski, A. (2002), "Noncoaxial resonance of an isolated multiwall carbon nanotube", Phys. Rev. B - Condensed Matter Mater. Phys., 66(23), 2334021-2334024. https://doi.org/10.1103/PhysRevB.66.233402.
- Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct, 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.
- Zhou, C., Chen, Z., Li, J., Cai, L. and Huang, Z. (2020), "Structural performance of novel SCARC column under axial and eccentric loads", Steel Composite Struct., 37(5), 503-516. https://doi.org/10.12989/scs.2020.37.5.503.
- Zou, R.D. and Foster, C.G. (1995), "Simple solution for buckling of orthotropic circular cylindrical shells", Thin-Walled Struct., 22(3), 143-158. https://doi.org/10.1016/0263-8231(94)00026-V.