DOI QR코드

DOI QR Code

Limit elastic speed analysis of rotating porous annulus functionally graded disks

  • Madan, Royal (Department of Mechanical Engineering, National Institute of Technology Raipur (C.G)) ;
  • Bhowmick, Shubhankar (Department of Mechanical Engineering, National Institute of Technology Raipur (C.G)) ;
  • Hadji, Lazreg (Faculty of Civil Engineering, Ton Duc Thang University) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • 투고 : 2021.03.27
  • 심사 : 2021.11.26
  • 발행 : 2022.02.10

초록

In this work, limit elastic speed analysis of functionally graded porous rotating disks has been reported. The work proposes an effective approach for modeling the mechanical properties of a porous functionally graded rotating disk. Four different types of porosity models namely: uniform, symmetric, inner maximum, and outer maximum distribution are considered. The approach used is the variational principle, and the solution has been achieved using Galerkin's error minimization theory. The study aims to investigate the effect of grading indices, aspect ratio, porosity volume fraction, and porosity types on limit angular speed for uniform and variable disk geometries of constant mass. To validate the current study, finite element analysis has been used, and there is good agreement between the two methods. The study yielded a decrease in limit speed as grading indices and aspect ratio increase. The porosity volume fraction is found to be more significant than the aspect ratio effect. The research demonstrates a range of operable speeds for porous and non-porous disk profiles that can be used in industries as design data. The results show a significant increase in limit speed for an exponential disk when compared to other disk profiles, and thus, the study demonstrates a range of FG-based structures for applications in industries that will not only save material (lightweight structures) but also improve overall performance.

키워드

참고문헌

  1. Alnujaie, A, Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27, 679-689. https://doi.org/10.12989/SSS.2021.27.4.679.
  2. Arefi, M. (2015), "The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers", Smart Struct. Syst.,15, 1345-1362. https://doi.org/10.12989/SSS.2015.15.5.1345.
  3. Arefi, M., Firouzeh, S., Mohammad-Rezaei Bidgoli, E. and Civalek, O . (2020a), "Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory", Compos. Struct., 247, 112391. https://doi.org/10.1016/j.compstruct.2020.112391.
  4. Arefi, M., Kiani, M. and Civalek, O. (2020b), "3-D magneto-electro-thermal analysis of layered nanoplate including porous core nanoplate and piezomagnetic face-sheets", Appl. Phys. A., 126, 76. https://doi.org/10.1007/s00339-019-3241-1.
  5. Arefi, M., Kiani, M. and Rabczuk, T. (2019), "Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets", Compos. Part B: Eng., 168, 320-333. https://doi.org/10.1016/j.compositesb.2019.02.057.
  6. Arefi, M. and Moghaddam, S.K. (2019), "Electro-elastic analysis of functionally graded piezoelectric variable thickness rotating disk under thermal environment", Struct. Eng. Mech., 71, 23-35. https://doi.org/10.12989/SEM.2019.71.1.023.
  7. Arefi, M. and Zenkour, A.M. (2017), "Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates", Eur Phys. J. Plus, 132, 423. https://doi.org/10.1140/epjp/i2017-11666-6.
  8. Arefi, M. and Allam, M.N.M. (2015), "Nonlinear responses of an arbitrary FGP circular plate resting on the Winkler-Pasternak foundation", Smart Struct. Syst., 16(1), 81-100. https://doi.org/10.12989/SSS.2015.16.1.081.
  9. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  10. Barati, M.R. and Shahverdi, H. (2017), "Aero-hygro-thermal stability analysis of higher-order refined supersonic FGM panels with even and uneven porosity distributions", J. Fluids Struct., 73, 125-136. http://dx.doi.org/10.1016/j.jfluidstructs.2017.06.007.
  11. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  12. Benferhat, R., Daouadji, T.H., Hadji, L. and Mansour, M.S. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123-136. http://dx.doi.org/10.12989/scs.2016.21.1.123.
  13. Bucciarelli, F., Malfense Fierro, G.P., Zarrelli, M. and Meo, M. (2019), "A non-destructive method for evaluation of the out of plane elastic modulus of porous and composite materials", Appl. Compos. Mater., 26(3), 871-896. https://doi.org/10.1007/s10443-018-9754-5.
  14. Cuiyan, L., Zhao, X., Haibo, O., Liyuan, C., Jianfeng, H. and Yijun, L. (2020), "Preparation, adsorption properties and microwave-assisted regeneration of porous C/SiC ceramics with a hierarchical structure", Appl. Compos. Mater., 27(3), 131-148. https://doi.org/10.1007/s10443-020-09801-x.
  15. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
  16. Dai, T., Dai, H.L. and Lin, Z.Y. (2019), "Multi-field mechanical behavior of a rotating porous FGMEE circular disk with variable thickness under hygrothermal environment", Compos. Struct., 210, 641-656. https://doi.org/10.1016/j.compstruct.2018.11.077
  17. Dastjerdi, S., Tadi Beni, Y. and Malikan, M. (2020), "A comprehensive study on nonlinear hygro-thermo-mechanical analysis of thick functionally graded porous rotating disk based on two quasi-three-dimensional theories", Mech. Based Des. Struct. Mach., 1-30. https://doi.org/10.1080/15397734.2020.1814812.
  18. Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Thermal Stresses, 38, 1360-1386. https://doi.org/10.1080/01495739.2015.1073980.
  19. Ebrahimi, F. and Barati, M.R. (2016), "Thermal buckling analysis of size-dependent FG nanobeams based on the third-order shear deformation beam theory", Acta Mechanica Solida Sinica, 29(5), 547-554. https://doi.org/10.1016/S0894-9166(16)30272-5.
  20. Ebrahimi F, Barati MR (2017), "Small-scale effects on hygrothermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams", Mechanics of Advanced Materials and Structures, 24(11), 924-936. http://dx.doi.org/10.1080/15376494.2016.1196795
  21. Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Braz. Soc. Mech. Sci. Eng., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0.
  22. Fantuzzi, N., Leonetti, L., Trovalusci, P. and Tornabene, F. (2018), "Some novel numerical applications of cosserat continua", Int. J. Comput. Methods, 15(06), 1850054. https://doi.org/10.1142/S0219876218500548.
  23. Farhatnia, F., Babaei, J. and Foroudastan, R. (2018), "Thermomechanical nonlinear bending analysis of functionally graded thick circular plates resting on winkler foundation based on sinusoidal shear deformation theory", Arab. J. Sci. Eng., 43(3), 1137-1151. https://doi.org/10.1007/s13369-017-2753-2.
  24. Ghandourah, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36, 293-305. https://doi.org/10.12989/SCS.2020.36.3.293.
  25. Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A, Tounsi, A., Al-Zahrani, M.M., Hussain, M., Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1-15. https://doi.org/10.12989/scs.2021.38.1.001.
  26. Guler, O., Varol, T., Alver, u ., Kaya, G. and Yildiz, F. (2021), "Microstructure and wear characterization of Al2O3 reinforced silver coated copper matrix composites by electroless plating and hot pressing methods", Mater. Today Commun., 27, 102205. https://doi.org/10.1016/j.mtcomm.2021.102205.
  27. Hacisalihoglu, I., Kaya, G., Erguder, T.O., Mandev, E., Manay, E. and Yildiz, F. (2021), "Tribological and thermal properties of plasma nitrided Ti45Nb alloy", Surfaces Interfaces, 22, 100893. https://doi.org/10.1016/j.surfin.2020.100893.
  28. Hadj, B., Rabia, B. and Daouadji, T.H. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., 72, 61-70. https://doi.org/10.12989/SEM.2019.72.1.061.
  29. Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Advan. Nano Res., 10, 281-293. https://doi.org/10.12989/ANR.2021.10.3.281.
  30. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  31. Heidari, Y., Arefi, M. and Irani Rahaghi, M. (2020), "Nonlocal vibration characteristics of a functionally graded porous cylindrical nanoshell integrated with arbitrary arrays of piezoelectric elements", Mech. Based Des. Struct. Machines, 1-28. https://doi.org/10.1080/15397734.2020.1830799.
  32. Erguder, T.O., Kaya, G., Hacisalihoglu, I., Yay, B. and Yildiz, F. (2020), "Wear behavior of Ni-B coated-hard anodized Al7Si alloy and machining performance with ZrN ceramic film coated carbide tool", Surfaces Interfaces, 21, 100768. https://doi.org/10.1016/j.surfin.2020.100768.
  33. Jabbari, M., Hashemitaheri, M., Mojahedin, A. and Eslami, M.R. (2014), "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials", J. Thermal Stresses, 37(2), 202-220. https://doi.org/10.1080/01495739.2013.839768.
  34. Jamaludin, S.N.S., Latiff, M.I.A., Nuruzzaman, D.M., Ismail, N. M. and Basri, S. (2020), "Investigation on microstructure and hardness of nickel-alumina functionally graded material", Materials Today: Proceedings, 29, 127-132. https://doi.org/10.1016/j.matpr.2020.05.644.
  35. Jia, A., Liu, H., Ren, L., Yun, Y. and Tahouneh, V. (2020), "Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate", Steel Compos. Struct., 35(1), 111-127. https://doi.org/10.12989/scs.2020.35.1.111.
  36. Kapuria, S., Bhattacharyya, M. and Kumar, A.N. (2008), "Theoretical modeling and experimental validation of thermal response of metal-ceramic functionally graded beams", J. Thermal Stresses 31, 759-787. https://doi.org/10.1080/01495730802194292.
  37. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. http://dx.doi.org/10.1016/j.matdes.2016.12.061.
  38. Kujala, S., Ryhanen, J., Danilov, A. and Tuukkanen, J. (2003), "Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute", Biomaterials, 24(25), 4691-4697. https://doi.org/10.1016/S0142-9612(03)00359-4.
  39. Liang, D., Wu, Q., Lu, X. and Tahouneh, V. (2020), "Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers", Steel Compos. Struct., 36, 47-62. https://doi.org/10.12989/SCS.2020.36.1.047.
  40. Li, Y., Feng, Z., Hao, L., Huang, L., Xin, C., Wang, Y. and Peijs, T. (2020), "A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties", Adv. Mater. Technol., 5(6), 1900981. https://doi.org/10.1002/admt.201900981.
  41. Madan, R. and Bhowmick, S. (2021), "Modeling of functionally graded materials to estimate effective thermo-mechanical properties", WJE ahead-of-print(ahead-of-print). https://doi.org/10.1108/WJE-09-2020-0445.
  42. Madan, R., Bhowmick, S. and Nath Saha, K. (2018), "Stress and deformation of functionally graded rotating disk based on modified rule of mixture", Mater. Today: Proceedings, 5(9), 17778-17785. https://doi.org/10.1016/j.matpr.2018.06.102.
  43. Madan, R., Bhowmick, S. and Saha, K. (2019), "Limit angular speed of L-FGM rotating disk for both temperature dependent and temperature independent mechanical properties", Mater. Today: Proceedings, 18, 2366-2373. https://doi.org/10.1016/j.matpr.2019.07.080.
  44. Madan, R., Bhowmick, S. and Saha, K. (2020), "A study based on stress-strain transfer ratio calculation using Halpin-Tsai and MROM material model for limit elastic analysis of metal matrix FG rotating disk", FME Transactions, 48(2), 204-210. https://doi.org/10.5937/fmet2001204R.
  45. Madan, R., Saha, K. and Bhowmick, S. (2019a), "Limit elastic analysis of rotating annular disks having sigmoid-FGM composition based on MROM", WJE, 16(6), 806-813. https://doi.org/10.1108/WJE-05-2019-0155.
  46. Madan, R., Saha, K. and Bhowmick, S. (2019b), "Limit elastic analysis of E-FGM rotating disk with temperature dependent mechanical properties", MMEP, 6(4), 634-640. https://doi.org/10.18280/mmep.060419.
  47. Madan, R., Saha, K. and Bhowmick, S. (2020), "Limit speeds and stresses in power law functionally graded rotating disks", Adv. Mater. Res., 9(2), 115-131. https://doi.org/10.12989/amr.2020.9.2.115.
  48. Madan, R., Saha, K.N. and Bhowmick, S. (2020), "Limit elastic analysis of FG ceramic rotating disk on the basis of effective mechanical properties", MSF, 978, 470-476. https://doi.org/10.4028/www.scientific.net/MSF.978.470.
  49. Madan, R. and Bhowmick, S. (2021b), "Limit elastic analysis of functionally graded rotating disks under thermo-mechanical loading", Int. J. Appl. Mech., 13, 2150033. https://doi.org/10.1142/S1758825121500332.
  50. Madan, R. and Bhowmick, S. (2021c), "A numerical solution to thermo-mechanical behavior of temperature dependent rotating functionally graded annulus disks", AEAT, 93, 733-744. https://doi.org/10.1108/AEAT-01-2021-0012.
  51. Madan, R. and Bhowmick, S. (2020), "A review on application of FGM fabricated using solid-state processes", Adv. Mater. Processing Technol., 6, 608-619. https://doi.org/10.1080/2374068X.2020.1731153.
  52. Mahdavi, E., Ghasemi, A. and Alashti, R.A. (2016), "Elastic-plastic analysis of functionally graded rotating disks with variable thickness and temperature-dependent material properties under mechanical loading and unloading", Aeros. Sci. Technol., 59, 57-68. https://doi.org/10.1016/j.jestch.2019.04.007.
  53. Matula, I., Dercz, G. and Barczyk, J. (2020), "Titanium/Zirconium functionally graded materials with porosity gradients for potential biomedical applications", Mater. Sci. Technol., 36(9), 972-977. https://doi.org/10.1080/02670836.2019.1593603.
  54. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.
  55. Moita, J.S., Araujo, A.L., Mota Soares, C.M., Mota Soares, C.A. and Herskovits, J. (2016), "Material and geometric nonlinear analysis of functionally graded plate-shell type structures", Appl. Compos. Mater., 23(4), 537-554. https://doi.org/10.1007/s10443-016-9473-8.
  56. Mojahedin, A., Jabbari, M., Khorshidvand, A.R. and Eslami, M.R. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin-Walled Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008.
  57. Nakamura, T., Wang, T. and Sampath, S. (2000), "Determination of properties of graded materials by inverse analysis and instrumented indentation", Acta Materialia, 48, 4293-4306. https://doi.org/10.1016/S1359-6454(00)00217-2.
  58. Phung-Van P, Thai, C.H., Ferreira, A.J.M. and Rabczuk, T. (2020), "Isogeometric nonlinear transient analysis of porous FGM plates subjected to hygro-thermo-mechanical loads", Thin-Walled Struct., 148, 106497. https://doi.org/10.1016/j.tws.2019.106497.
  59. Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293.
  60. Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33, 865-875. https://doi.org/10.12989/SCS.2019.33.6.865.
  61. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Thermal Stresses, 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
  62. Safarpour, M., Rahimi, A.R. and Alibeigloo, A. (2020), "Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM", Mech. Based Des. Struct. Mach., 48(4), 496-524. https://doi.org/10.1080/15397734.2019.1646137.
  63. Shackelford, J.F. and Alexander, W. (2001), CRC Materials Science and Engineering Handbook, CRC Press, Boca Raton, FL
  64. Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.
  65. Wang, F., Cheng, L. and Liang, S. (2019), "Effects of pore on thermal diffusivity and thermal radiation properties of C/SiC composites at high temperatures", Appl. Compos. Mater., 26(5-6), 1411-1422. https://doi.org/10.1007/s10443-019-09787-1.
  66. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aeros. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  67. Woodward, B. and Kashtalyan, M. (2019), "Three-dimensional elasticity analysis of sandwich panels with functionally graded transversely isotropic core", Arch Appl Mech, 89(12), 2463-2484. https://doi.org/10.1007/s00419-019-01589-y.
  68. Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/scs.2020.35.2.249.
  69. Zhang, Y., Jin, G., Chen, M., Ye, T., Yang, C. and Yin, Y. (2020), "Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core", Compos. Struct., 244, 112298. https://doi.org/10.1016/j.compstruct.2020.112298.
  70. Zheng, Y., Bahaloo, H., Mousanezhad, D., Mahdi, E., Vaziri, A. and Nayeb-Hashemi, H. (2016), "Stress analysis in functionally graded rotating disks with non-uniform thickness and variable angular velocity", Int. J. Mech. Sci., 119, 283-293. https://doi.org/10.1016/j.ijmecsci.2016.10.018.