References
- Baba, B.O. (2007), "Buckling Behavior of Laminated Composite Plates", J. Reinforced Plastics Compos., 26(16), 1637-1655. https://doi.org/10.1177/0731684407079515.
- Baba, B.O. and Baltaci, A. (2007), "Buckling characteristics of symmetrically and antisymmetrically laminated composite plates with central cutout", J. Appl. Compos. Mater., 14(4), 265-276. https://doi.org/10.1007/s10443-007-9045-z.
- Bathe, K.J. (2006), Finite Element Procedures, Prentice Hall, Pearson Education, Inc.
- Bedair, O. (2009), "Analysis and limit state design of stiffened plates and shells: A world view", J. Appl. Mech. Rev., 62(2), 020801. https://doi.org/10.1115/1.3077137.
- Cook, R.D. (2007), Concepts and Applications of Finite Element Aanalysis, John Wiley & Sons
- Daikh, A.A. and Zenkour, A.M. (2019), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mater. Res. Express, 6, 115707. https://doi.org/10.1088/2053-1591/ab48a9.
- Deng, J., Wang, X., Yuan, Z. and Zhou, G. (2019b), "Novel quadrature element formulation for simultaneous local and global buckling analysis of eccentrically stiffened plates", J. Aeros. Sci. Technol., 87, 154-166. https://doi.org/10.1016/j.ast.2019.02.019.
- Deng, J., Wang, X., Yuan, Z. and Zhou, G.J.A.I.E.S. (2019a), "An efficient technique for simultaneous local and overall buckling analysis of stiffened panels", J. Advances Eng. Software, 131, 36-47. https://doi.org/10.1016/j.advengsoft.2019.03.002.
- Deolasi, P., Datta, P. and Prabhakar, D. (1995), "Buckling and vibration of rectangular plates subjected to partial edge loading (compression or tension)", J. Struct. Eng., 22(3), 135-144.
- Ghannadpour, S., Najafi, A. and Mohammadi, B. (2006), "On the buckling behavior of cross-ply laminated composite plates due to circular/elliptical cutouts", J. Compos. Struct., 75(1-4), 3-6. https://doi.org/10.1016/j.compstruct.2006.04.071.
- Ghavami, K. (1994), "Experimental study of stiffened plates in compression up to collapse", J. Construct. Steel Res., 28(2), 197-221. https://doi.org/10.1016/0143-974X(94)90043-4.
- Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate", Comput. Mater. Continua, 59(2). https://doi.org/10.32604/cmc.2019.06660
- Hamedani, S.J. and Ranji, A.R. (2013), "Buckling analysis of stiffened plates subjected to non-uniform biaxial compressive loads using conventional and super finite elements", J Thin-Walled Struct., 64, 41-49. https://doi.org/10.1016/j.tws.2012.12.004.
- Hamedani, S.J., Khedmati, M.R. and Azkat, S. (2012), "Vibration analysis of stiffened plates using finite element method", Latin Amer. J. Solids Struct., 9(1), 1-20. https://doi.org/10.1590/S1679-78252012000100001.
- Hughes, T.J. and Cohen, M. (1978), "The "heterosis" finite element for plate bending", J. Comput. Stuct., 9(5), 445-450. https://doi.org/10.1016/0045-7949(78)90041-X.
- Jaunky, N., Knight Jr, N.F. and Ambur, D.R. (1996), "Formulation of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels", J. Compos. Part B: Eng., 27(5), 519-526. https://doi.org/10.1016/1359-8368(96)00032-7.
- Kalgutkar, A.P., Banerjee, S. and Rajanna, T. (2021), "Effect of elliptical cutouts on buckling and vibration characteristics of stiffened composite panels under non-uniform edge loads", Mech. Based Des. Struct. Machines, 1-15. https://doi.org/10.1080/15397734.2021.1999266.
- Komur, M.A. and Sonmez, M. (2008), "Elastic buckling of rectangular plates under linearly varying in-plane normal load with a circular cutout", J,. Mech. Res. Commu., 35(6), 361-371. https://doi.org/10.1016/j.mechrescom.2008.01.005.
- Komur, M.A. and Sonmez, M. (2015), "Elastic buckling behavior of rectangular plates with holes subjected to partial edge loading", J. Construct. Steel Research, 112, 54-60. https://doi.org/10.1016/j.jcsr.2015.04.020.
- Komur, M.A., Sen, F., Atas, A. and Arslan, N. (2010), "Buckling analysis of laminated composite plates with an elliptical/circular cutout using FEM", J. Adv. Eng. Software, 41(2), 161-164. https://doi.org/10.1016/j.advengsoft.2009.09.005.
- Kumar, L.R., Datta, P. and Prabhakara, D. (2004), "Dynamic instability characteristics of doubly curved panels subjected to partially distributed follower edge loading with damping", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Science, 218(1), 67-81. https://doi.org/10.1243/095440604322786956.
- Kumar, Y.S. and Mukhopadhyay, M. (1999), "A new finite element for buckling analysis of laminated stiffened plates", J. Compos. Struct., 46(4), 321-331. https://doi.org/10.1016/S0263-8223(99)00059-8.
- Lal, R. and Saini, R. (2013), "Buckling and vibration of nonhomogeneous rectangular plates subjected to linearly varying in-plane force", J. Shock Vib., 20(5), 879-894. https://doi.org/10.3233/SAV-130791.
- Leissa, A. and Ayoub, E. (1988), "Vibration and buckling of a simply supported rectangular plate subjected to a pair of inplane concentrated forces", J. Sound Vib., 127(1), 155-171. https://doi.org/10.1016/0022-460X(88)90356-2.
- Liew, K.M., Peng, L. and Kitipornchai, S. (2007), "Geometric nonlinear analysis of folded plate structures by the spline strip kernel particle method", Int. J. Numer. Methods Eng., 71(9), 1102-1133. https://doi.org/10.1002/nme.1984.
- Mittelstedt, C. (2008), "Explicit analysis and design equations for buckling loads and minimum stiffener requirements of orthotropic and isotropic plates under compressive load braced by longitudinal stiffeners", Thin-Walled Struct., 46(12), 1409-1429. https://doi.org/10.1016/j.tws.2008.03.007.
- Moen, C.D. and Schafer, B. (2009), "Elastic buckling of thin plates with holes in compression or bending", J. Thin-Walled Struct., 47(12), 1597-1607. https://doi.org/10.1016/j.tws.2009.05.001.
- Muddappa, Y.P.P., Rajanna, T. and Giridhara, G. (2021a), "Effect of compression and tension types of concentrated edge loads on buckling and vibration behavior of interlaminar hybrid fibre metal laminates", Compos. Part C: Open Access. https://doi.org/10.1016/j.jcomc.2021.100167.
- Muddappa, Y.P.P., Rajanna, T. and Giridhara, G. (2021b), "Effect of tensile and compressive nonlinear edge loads on the buckling performance of hybrid metal composite laminates with cutouts", Mech. Based Des. Struct. Machines, 01-19. https://doi.org/10.1080/15397734.2021.1956331.
- Muddappa, Y.P.P., Rajanna, T. and Giridhara, G. (2021c), "Effect of reinforced cutouts on the buckling and vibration performance of hybrid fibre metal laminates", Mech. Based Des. Struct. Machines, https://doi.org/10.1080/15397734.2021.1948862.
- Mukhopadhyay, M. (1989), "Vibration and stability analysis of stiffened plates by semi-analytic finite difference method, part II: Consideration of bending and axial displacements", J. Sound Vib., 130(1), 41-53. https://doi.org/10.1016/0022-460X(89)90518-X.
- Nguyen, T.N., Ngo, T.D. and Nguyen-Xuan, H. (2017), "A novel three-variable shear deformation plate formulation: Theory and Isogeometric implementation", Comput. Methods Appl. Mechanics Eng., 326, 376-401. https://doi.org/10.1016/j.cma.2017.07.024.
- Onkar, A.K., Upadhyay, C.S. and Yadav, D. (2006), "Stochastic Finite Element Buckling Analysis of Laminated Plates With Circular Cutout Under Uniaxial Compression", J. Appl. Mech., 74(4), 798-809. https://doi.org/10.1115/1.2711230.
- Patel, S. and Sheikh, A. (2016), "Buckling response of laminated composite stiffened plates subjected to partial in-plane edge loading", Int. J. Comput. Methods Eng. Sci. Mech., 17(5-6), 322-338. https://doi.org/10.1080/15502287.2016.1231235.
- Peng, L., Liew, K. and Kitipornchai, S. (2006), "Buckling and free vibration analyses of stiffened plates using the FSDT mesh-free method", Journal of Sound Vibration, 289(3), 421-449. https://doi.org/10.1016/j.jsv.2005.02.023.
- Qin, Y., Luo, K.R. and Yan, X. (2020), "Buckling analysis of steel plates in composite structures with novel shape function", Steel Compos. Struct., 35(3), 405-413. http://dx.doi.org/10.12989/scs.2020.35.3.405.
- Rajanna, T. and Gowda, VML. (2021a), "Effect of non-uniform inplane bending and edge conditions on the stability behaviour of laminated panels with and without cutouts", Mater. Today: Proceedings, 45, 156-160. https://doi.org/10.1016/j.matpr.2020.10.402.
- Rajanna, T. and Gowda, VML. (2021b), "Dynamic behaviour of perforated laminated panels under biaxial non-uniform edge loads based on FE approach", Materials Today: Proceedings, 45, 179-183. https://doi.org/10.1016/j.matpr.2020.10.413.
- Rajanna, T., Banerjee, S., Desai, Y.M. and Prabhakara, D. (2017), "Effect of boundary conditions and non-uniform edge loads on buckling characteristics of laminated composite panels with and without cutout", Int. J. Comput. Meth. Eng. Sci. Mech., 18(1), 64-76. https://doi.org/10.1080/15502287.2016.1276350.
- Rajanna, T., Banerjee, S., Desai, Y.M. and Prabhakara, D. (2018), "Effect of reinforced cutouts and ply-orientations on buckling behavior of composite panels subjected to non-uniform edge loads", Int. J. Struct. Stab. Dyn., 18(04), 1850058. https://doi.org/10.1142/S021945541850058X.
- Rajanna, T., Subash Chandra, K.S. and Rao, K.V. (2021), "Influence of local stiffeners and cutout shapes on the vibration and stability characteristics of quasi-isotropic laminates under hygro-thermo-mechanical loadings", Defence Technology. https://doi.org/10.1016/j.dt.2021.10.002.
- Ravi Kumar, L., Datta, P. and Prabhakara, D. (2005), "Vibration and stability behavior of laminated composite curved panels with cutout under partial in-plane loads", Int. J. Struct. Stab. Dyn., 5(01), 75-94. https://doi.org/10.1142/S0219455405001507.
- Reddy, J. and Phan, N. (1985), "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory", J. Sound Vib., 98(2), 157-170. https://doi.org/10.1016/0022-460X(85)90383-9.
- Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press
- Sadamoto, S., Tanaka, S., Taniguchi, K., Ozdemir, M., Bui, T., Murakami, C. and Yanagihara, D. (2017), "Buckling analysis of stiffened plate structures by an improved meshfree flat shell formulation", J. Thin-Walled Struct., 117, 303-313. https://doi.org/10.1016/j.tws.2017.04.012.
- Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Meth. Appl. Mech. Eng., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790.
- Shahsavari, D., Karami, B. and Janghorban, M. (2019), "On buckling analysis of laminated composite plates using a nonlocal refined four-variable model", Steel Compos. Struct., 32(2), 173-187. http://dx.doi.org/10.12989/scs.2019.32.2.173.
- Shanmugam, N.E., Thevendran, V. and Tan, Y.H. (1999), "Design formula for axially compressed perforated plates", Thin-Walled Struct., 34(1), 1-20. https://doi.org/10.1016/S0263-8231(98)00052-4.
- Shimizu, S. (2007), "Tension buckling of plate having a hole", Thin-Walled Struct., 45(10), 827-833. https://doi.org/10.1016/j.tws.2007.08.033.
- Singh, S.B. and Kumar, D. (2010), "Cutout shape and size effects on response of quasi-isotropic composite laminate under uniaxial compression", Struct. Eng. Mech., 35(3). http://dx.doi.org/10.12989/sem.2010.35.3.335.
- Soni, G., Singh, R. and Mitra, M. (2013), "Buckling Behavior of Composite Laminates (with and without cutouts) subjected to nonuniform in-plane loads", Int. J. Struct. Stab. Dyn., 13(08), 1350044. https://doi.org/10.1142/S0219455413500442.
- Srivastava, A.K.L. (2012), "Vibration of Stiffened Plates with Cutout Subjected to Partial Edge Loading", J. Institut. Eng. (India): Series A, 93(2), 129-135. https://doi.org/10.1007/s40030-012-0018-3.
- Subash Chandra, K.S., Rajanna, T. and Rao, K.V. (2020), "A Parametric study on the effect of elliptical cutouts for buckling behavior of composite plates under non-uniform edge loads", Latin Amer. J. Solids Struct., 17(8). https://doi.org/10.1590/1679-78256225.
- Subash Chandra, K.S., Rajanna, T. and Rao, K.V. (2021), "Hygrothermo-mechanical vibration and buckling analysis of composite laminates with elliptical cutouts under localized edge loads", Int. J. Struct. Stab. Dyn., 21(11), 2150150. https://doi.org/10.1142/S0219455421501509.
- Swaminathan, K., Sachin, H. and Rajanna, T. (2021), "Buckling analysis of functionally graded materials by dynamic approach", Materials Today: Proceedings, 45, 172-178. https://doi.org/10.1016/j.matpr.2020.10.412.
- Tamijani, A.Y. and Kapania, R.K. (2010), "Buckling and static analysis of curvilinearly stiffened plates using mesh-free method", AIAA J., 48(12), 2739-2751. https://doi.org/10.2514/1.43917.
- Thai, C.H., Kulasegaram, S., Tran, L.V. and Nguyen-Xuan, H. (2014), "Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach", Comput. Struct., 141, 94-112. https://doi.org/10.1016/j.compstruc.2014.04.003.
- Timoshenko, S. (1970), Theory Of Elastic Stability, McGraw-Hill
- Topal, U. and Uzman, U. (2008), "Maximization of buckling load of laminated composite plates with central circular holes using MFD method", Struct. Multidisciplinary Optimization, 35(2), 131-139. https://doi.org/10.1007/s00158-007-0119-1.
- Vu-Bac, N., Duong, T.X., Lahmer, T., Zhuang, X., Sauer, R.A., Park, H.S. and Rabczuk, T. (2018), "A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures", Comput. Meth. Appl. Mech. Eng., 331, 427-455. https://doi.org/10.1016/j.cma.2017.09.034.
- Wang, Y. and Qiao, P. (2021), "Improved buckling analysis of stiffened laminated composite plates by spline finite strip method", J. Compos. Struct., 255, 112936. https://doi.org/10.1016/j.compstruct.2020.112936.
- Xu, Y., Tong, Y., Liu, M. and Suman, B. (2016), "A new effective smeared stiffener method for global buckling analysis of grid stiffened composite panels", J. Compos. Struct., 158 83-91. https://doi.org/10.1016/j.compstruct.2016.09.015.
- Yathish Muddappa, P.P., Giridhara, G. and Rajanna, T. (2020), "Buckling behavior of interlaminar hybrid fiber metal laminate (HFMLs) subjected to uniaxial compressive loading", Mater. Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.10.111.
- Yu, C.L., Feng, J.C. and Chen, K. (2015), "Ultimate uniaxial compressive strength of stiffened panel with opening under lateral pressure", Int. J. Naval Architect. Ocean Eng., 7(2), 399-408. https://doi.org/10.1515/ijnaoe-2015-0028.
- Zakeri, M., Mozaffari, A. and Katirae, M.A. (2018), "Influence of stiffener edge on the buckling load of holed composite plates", Steel Compos. Struct., 29(5), 681-688. http://dx.doi.org/10.12989/scs.2018.29.5.681.
- Zhong, H. and Gu, C. (2007), "Buckling of symmetrical cross-ply composite rectangular plates under a linearly varying in-plane load", Compos. Struct., 80(1), 42-48. https://doi.org/10.1016/j.compstruct.2006.02.030.