DOI QR코드

DOI QR Code

MEC 시스템에서 태스크 파티셔닝 기법의 성능 비교

Performance Comparison of Task Partitioning Methods in MEC System

  • 투고 : 2021.12.24
  • 심사 : 2022.01.24
  • 발행 : 2022.05.31

초록

최근 사물 인터넷의 발전과 함께 차량과 IT 기술의 융합되어 자율주행과 같은 고성능의 어플리케이션들이 등장하면서 멀티 액세스 엣지 컴퓨팅(MEC)이 차세대 기술로 부상하였다. 이런 계산 집약적인 태스크들을 낮은 지연시간 안에 제공하기 위해, 여러 MEC 서버(MECS)들이 협력하여 해당 태스크를 수행할 수 있도록 태스크를 파티셔닝하는 기법들이 많이 제안되고 있다. 태스크 파티셔닝과 관련된 연구들은 모바일 디바이스에서 태스크를 파티셔닝하여 여러 MECS들에게 오프로딩을 하는 기법과 디바이스에서 MECS로 오프로딩한 후 해당 MECS에서 파티셔닝하여 다른 MECS들에게 마이그레이션하는 기법으로 나누어볼 수 있다. 본 논문에서는 오프로딩과 마이그레이션을 이용한 파티셔닝 기법들을 파티셔닝 대상 선정 방법 및 파티셔닝 개수 변화에 따른 서비스 지연시간, 거절률 그리고 차량의 에너지 소비량 측면에서의 성능을 분석하였다. 파티셔닝 개수가 증가할수록 지연시간의 성능은 향상하나, 거절률과 에너지 소모량의 성능은 감소한다.

With the recent development of the Internet of Things (IoT) and the convergence of vehicles and IT technologies, high-performance applications such as autonomous driving are emerging, and multi-access edge computing (MEC) has attracted lots of attentions as next-generation technologies. In order to provide service to these computation-intensive tasks in low latency, many methods have been proposed to partition tasks so that they can be performed through cooperation of multiple MEC servers(MECSs). Conventional methods related to task partitioning have proposed methods for partitioning tasks on vehicles as mobile devices and offloading them to multiple MECSs, and methods for offloading them from vehicles to MECSs and then partitioning and migrating them to other MECSs. In this paper, the performance of task partitioning methods using offloading and migration is compared and analyzed in terms of service delay, blocking rate and energy consumption according to the method of selecting partitioning targets and the number of partitioning. As the number of partitioning increases, the performance of the service delay improves, but the performance of the blocking rate and energy consumption decreases.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1047113).

참고문헌

  1. S. Raza, S. Wang, M. Ahmed, and M. R. Anwar, "A survey on vehicular edge computing: Architecture, applications, technical issues, and future directions," Wireless Communications and Mobile Computing, Vol.2019, pp.1-19, 2019.
  2. S. Wang, J. Xu, N. Zhang, and Y. Liu, "A survey on service migration in mobile edge computing," IEEE Access, Vol.6, pp.23511-23528, 2018. https://doi.org/10.1109/access.2018.2828102
  3. Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, "Joint load balancing and offloading in vehicular edge computing and networks," IEEE Internet of Things Journal, Vol.6, No.3, pp.4377-4387, 2019. https://doi.org/10.1109/jiot.2018.2876298
  4. J. Liu and Q. Zhang, "Offloading schemes in mobile edge computing for ultra-reliable low latency communications," IEEE Access, Vol.6, pp.2169-3536, 2018.
  5. J. Liu and Q. Zhang, "Code-partitioning offloading schemes in mobile edge computing for augmented reality," IEEE Access, Vol.7, pp.11222-11236, 2019. https://doi.org/10.1109/access.2019.2891113
  6. M. Li, J. Gao, L. Zhao, and X. Shen, "Deep reinforcement learning for collaborative edge computing in vehicular networks," IEEE Transactions on Cognitive Communications and Networking, Vol.6, No.4, pp.1122-1135, 2020. https://doi.org/10.1109/TCCN.2020.3003036
  7. L. Chen, S. Zhou, and J. Xu, "Computation peer offloading for energy-constrained mobile edge computing in small-cell networks," IEEE/ACM Transactions on Networking, Vol.26, No.4, pp.1619-1632, 2018. https://doi.org/10.1109/tnet.2018.2841758
  8. Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, "Mobile-edge computing: Partial computation offloading using dynamic voltage scaling," IEEE Transactions on Communications, Vol.64, No.10, pp.4268-4282, 2016. https://doi.org/10.1109/TCOMM.2016.2599530
  9. M. Feng, M. Krunz, and W. Zhang, "Joint task partitioning and user association for latency minimization in mobile edge computing networks," IEEE Transactions on Vehicular Technology, Vol.70, No.8, pp.8108-8121, 2021. https://doi.org/10.1109/TVT.2021.3091458
  10. J. Liu and Q. Zhang, "Adaptive task partitioning at local device or remote edge server for offloading in MEC," Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), pp.1-6, May, 2020.