DOI QR코드

DOI QR Code

Influence of Loading Procedure of Liquid Butadiene Rubber on Properties of Silica-filled Tire Tread Compounds

  • Jinwoo Seo (Elastic Composite Research Division, Korea Institute of Footwear & Leather Technology) ;
  • Woong Kim (Elastic Composite Research Division, Korea Institute of Footwear & Leather Technology) ;
  • Seongguk Bae (Elastic Composite Research Division, Korea Institute of Footwear & Leather Technology) ;
  • Jungsoo Kim (Elastic Composite Research Division, Korea Institute of Footwear & Leather Technology)
  • Received : 2022.06.28
  • Accepted : 2022.10.05
  • Published : 2022.12.31

Abstract

Low molecular weight liquid butadiene rubber (LqBR) is a processing aid that can resolve the migration problem of tire tread compounds. Various studies are being conducted to replace the petroleum-based processing oil with LqBR. However, the effect of the loading time of LqBR in the compounding process on silica dispersion and vulcanizate properties is not well known. In this study, we analyzed silica dispersion, vulcanizate properties, and viscoelastic properties of silica-filled tire tread compound according to the processing aid type (TDAE oil, non-functional LqBR) and, silane terminated LqBR) and input timing. In the non-functional LqBR compounds, the 'with TESPT' mixing procedure showed excellent dynamic viscoelastic properties while silane-terminated LqBR compounds showed that the 'after TESPT' mixing procedure was good for 300% modulus and abrasion resistance.

Keywords

Acknowledgement

본 연구는 산업통산자원부 소재부품기술개발사업(전략핵심소재자립화)의지원을받아수행된연구임(과제번호: 20010851).

References

  1. P. Weng, Z. Tang, and B. Guo, "Solving 'magic triangle' of tread rubber composites with phosphonium-modified petroleum resin", Polym., 190, 122244 (2020).
  2. W. Niedermeier, "The significant expansion of the 'magic triangle' for truck tires", RubberChem'99, 8-1 (1999).
  3. S. Maghami, "Silica-filled tire tread compounds: an investigation into the viscoelastic properties of the rubber compounds and their relation to tire performance", Ph. D. Thesis, University of Twente, Enschede, the Netherlands (2016).
  4. P. Zhang, M. J. Wang, Y. Kutsovsky, S. Laube, and K Mahmud, "A New Generation Carbon-Silica Dual Phase Filler (CSDPF) Part II. Application to Passenger Tread Compounds for Improved Tradeoff among Rolling Resistance, Wet Traction and Treadwear Performance", In a meeting of the Rubber Division, American Chemical Society Cleveland, Ohio (2001).
  5. N. Rattanasom, T. Saowapark, and C. Deeprasertkul, "Reinforcement of natural rubber with silica/carbon black hybrid filler", Polym. Test, 26, 369 (2007).
  6. W. Kim, E. Yu, G. Ryu, D. Kim, C. Ryu, Y. Seo, and W. Kim, "Silica dispersion and properties of silica filled ESBR/BR/NR ternary blend composites by applying wet masterbatch technology", Polym. Test, 84, 106350 (2020).
  7. D. Kim, B. Ahn, K. Kim, J. Lee, I. J. Kim, and W. Kim, "Effects of Molecular Weight of Functionalized Liquid Butadiene Rubber as a Processing Aid on the Properties of SSBR/Silica Compounds", Polym., 13, 850 (2021).
  8. A. A. Hassan, K. Formela, and S. Wang, "Enhanced interfacial and mechanical performance of styrene-butadiene rubber/silica composites compatibilized by soybean oil derived silanized plasticization", Composites Science and Technology, 108271 (2020).
  9. M. Hassanabadi, M. Najafi, G. H. Motlagh, and S. S. Garakani, "Synthesis and characterization of end-functionalized solution polymerized styrene-butadiene rubber and study the impact of silica dispersion improvement on the wear behavior of the composite", Polym. Test, 85, 106431 (2020).
  10. T. Kataoka, P. B. Zetterlund, and B. Yamada, "Effects of storage and service on tire performance: oil component content and swelling behavior", Rubber Chem. Technol., 76, 507 (2003).
  11. T. Nakazono and A. Matsumoto, "Mechanical properties and thermal aging behavior of styrene-butadiene rubbers vulcanized using liquid diene polymers as the plasticizer", J. Appl. Polym. Sci., 118, 2314 (2010).
  12. M. Gruendken, "Liquid rubber for safer and faster tires" In Proceedings of the Tire Technology Expo 2018, Hannover, Germany, 14-16 February (2017).
  13. K. Ikeda, "Bio liquid polymer for winter tires" In Proceedings of the Tire Technology Expo 2018, Hanover, Germany, 20-22 February (2018).
  14. V. P. Sierra, J. Mann, C. Van De Pol, N Kendziorra, K. Herzog, C. Recker, and N. Muller, "Rubber blend with improved rolling resistance behavior", U.S. Patent 9080042 (2015).
  15. J. K. Hirata, "Effects of crosslinkable plasticizers", RFP Rubber Fibers Plast. Int., 6, 212 (2011).
  16. T. E. Hogan, W. L. Hergenrother, and M. Tallman, "Amine-containing alkoxysilyl-functionalized polymers", U.S. Patent 8148486 (2012).
  17. K. Taniguchi, K. Tsukimawashi, N. Kobayashi, and T. Tadaki, "Conjugated-diolefin (co) polymer rubber and process for producing the same", U.S. Patent 7528199 (2009).
  18. R. Herpich, T. Fruh, L. Heiliger, and K. Schilling, "Silica gel-containing rubber compounds with organosilicon compounds as compounding agent", U.S. Patent 6593418 (2003).
  19. S. Satoyuki and M. Tochiro, U.S. Patent 2005350603 (2005).
  20. E. Chae and S. S. Choi, "Building Calibration Curve for Py-GC/MS Analysis of SBR/BR Blend Rubber Compounds", Elastomers and Composites, 55, 281 (2020).
  21. S. Han, W. S. Kim, D. Y. Mun, B. Ahn, and W. Kim, "Effect of coupling agents on the vulcanizate structure of carbon black filled natural rubber", Compos. Interfaces, 27, 355 (2020).
  22. P. J. Flory, "Principles of polymer chemistry", p. 576, Cornell University Press, New York, NY, USA, (1953).
  23. J. Y. Lee, "The effect of accelerator contents on the vulcanizates structures of SSBR silica vulcanizates" Compos. Interfaces, 24, 563 (2016).
  24. P. J. Flory, "Statistical mechanics of swelling of network structures", J. Chem. Phys., 18, 108 (1950).
  25. A. Ansarifar, L. Wang, R. Ellis, S. Kirtley, and N. Riyazuddin, "Enhancing the mechanical properties of styrene-butadiene rubber by optimizing the chemical bonding between silanized silica nanofiller and the rubber", J. Appl. Polym. Sci., 105, 2 (2007).
  26. A. Ansarifar, R. Nijhawan, T. Nanapoolsin, and M. Song, "Reinforcing effect of silica and silane fillers on the properties of some natural rubber vulcanizates", Rubber Chem. Technol., 76, 5 (2003).
  27. C. R. Parks and R. J. Brown, "Crosslink density of elastomers. a new gas chromatographic method", Rubber Chem. Technol., 49, 233 (1976).
  28. B. Ahn, N. Park, D. Kim, and W. Kim, "Influence of end-functionalized solution styrene-butadiene rubber on silica-filled vulcanizates with various silica-silane systems", Rubber Chem. Technol., 92, 364 (2019).
  29. S. S. Choi, "Improvement of properties of silica-filled styrene-butadiene rubber (SBR) compounds using acrylonitrile-styrene-butadiene rubber (NSBR)", Polym. Adv. Technol., 14, 557 (2000). https://doi.org/10.1002/pat.367
  30. E. Padenko, P. Berki, B. Wetzel, and J. Karger-Kocsis, "Mechanical and abrasion wear properties of hydrogenated nitrile butadiene rubber of identical hardness filled with carbon black and silica", J. Reinf. Plast. Comp., 35, 1 (2016).