DOI QR코드

DOI QR Code

Analysis of photothermal response in a two-dimensional semiconducting material thermally excited by pulse heat flux

  • Saeed, Tareq (Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Mathematics Department, King Abdulaziz University) ;
  • Abbas, Ibrahim (Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Mathematics Department, King Abdulaziz University)
  • Received : 2021.04.15
  • Accepted : 2022.02.11
  • Published : 2022.05.25

Abstract

A mathematical model of Lord-Shulman photo-thermal theorem induced by pulse heat flux is presented to study the propagations waves for plasma, thermal and elastic in two-dimensional semiconductor materials. The medium is assumed initially quiescent. By using Laplace-Fourier transforms with the eigenvalue method, the variables are obtained analytically. A semiconductor medium such as silicon is investigated. The displacements, stresses, the carrier density and temperature distributions are calculated numerically and clarified graphically. The outcomes show that thermal relaxation time has varying degrees of effects on the studying fields.

Keywords

Acknowledgement

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No (DF-786-130-1441). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

References

  1. Abbas, I.A. (2014), "The effects of relaxation times and a moving heat source on a two-temperature generalized thermoelastic thin slim strip", Can. J. Phys., 93(5), 585-590. https://doi.org/10.1139/cjp-2014-0387.
  2. Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties", Meccanica, 49(7), 1697-1708. https://doi.org/10.1007/s11012-014-9948-3.
  3. Abbas, I.A. (2015), "The effects of relaxation times and a moving heat source on a two-temperature generalized thermoelastic thin slim strip", Can. J. Phys., 93(5), 585-590. https://doi.org/10.1139/cjp-2014-0387.
  4. Abbas, I.A. and Alzahrani, F.S. (2016), "Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse", Steel Compos. Struct., 21(4), 791-803. https://doi.org/10.12989/scs.2016.21.4.791.
  5. Abbas, I.A., Alzahrani, F.S. and Elaiw, A. (2019), "A DPL model of photothermal interaction in a semiconductor material", Wave. Random Complex Media, 29(2), 328-343. https://doi.org/10.1080/17455030.2018.1433901.
  6. Abbas, I.A., El-Amin, M. and Salama, A. (2009), "Effect of thermal dispersion on free convection in a fluid saturated porous medium", Int. J. Heat Fluid Flow, 30(2), 229-236. https://doi.org/10.1016/j.ijheatfluidflow.2009.01.004.
  7. Abbas, I.A. and Kumar, R. (2014), "Deformation due to thermal source in micropolar generalized thermoelastic half-space by finite element method", J. Comput. Theor. Nanosci., 11(1), 185-190. https://doi.org/10.1166/jctn.2014.3335.
  8. Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20(5), 1103-1117. https://doi.org/10.12989/scs.2016.20.5.1103.
  9. Abbas, I.A. and Zenkour, A.M. (2014), "The effect of rotation and initial stress on thermal shock problem for a fiber-reinforced anisotropic half-space using Green-Naghdi theory", J. Comput. Theor. Nanosci., 11(2), 331-338. https://doi.org/10.1166/jctn.2014.3356.
  10. Ailawalia, P. and Kumar, A. (2019), "Ramp type heating in a semiconductor medium under photothermal theory", Silicon, 1-10. https://doi.org/10.1007/s12633-019-00130-8.
  11. Alzahrani, F.S. and Abbas, I.A. (2016), "The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory", Steel Compos. Struct., 22(2), 369-386. http://dx.doi.org/10.12989/scs.2016.22.2.369.
  12. Alzahrani, F.S. and Abbas, I.A. (2019), "Photo-thermo-elastic interactions without energy dissipation in a semiconductor half-space", Result. Phys., 102805. https://doi.org/10.1016/j.rinp.2019.102805.
  13. Alzahrani, F.S. and Abbas, I.A. (2020), "Fractional order GL model on thermoelastic interaction in porous media due to pulse heat flux", Geomech. Eng., 23(3), 217-225. http://doi.org/10.12989/gae.2020.23.3.217.
  14. Baksi, A., Roy, B.K. and Bera, R.K. (2008), "Study of two dimensional visco-elastic problems in generalized thermoelastic medium with heat source", Struct. Eng. Mech., 29(6), 673-687. http://doi.org/10.12989/sem.2008.29.6.673.
  15. Bhatti, M.M., Marin, M., Zeeshan, A., Ellahi, R. and Abdelsalam, S.I. (2020), "Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries", Front. Phys., 8, 95. https://doi.org/10.3389/fphy.2020.00095.
  16. Das, N.C., Lahiri, A. and Giri, R.R. (1997), "Eigenvalue approach to generalized thermoelasticity", Ind. J. Pure Appl. Math., 28(12), 1573-1594.
  17. Debnath, L. and Bhatta, D. (2016), Integral Transforms and their Applications, Chapman and Hall/CRC.
  18. Ezzat, M.A. and El-Bary, A.A. (2016), "Magneto-thermoelectric viscoelastic materials with memory-dependent derivative involving two-temperature", Int. J. Appl. Electromagnet. Mech., 50(4), 549-567. https://doi.org/10.3233/JAE-150131.
  19. Hobiny, A. and Abbas, I. (2019), "A GN model on photothermal interactions in a two-dimensions semiconductor half space", Result. Phys., 15, 102588. https://doi.org/10.1016/j.rinp.2019.102588.
  20. Kakar, R. and Kakar, S. (2015), "Edge wave propagation in an Electro-Magneto-Thermoelastic homogeneous plate subjected to stress", Struct. Eng. Mech., 53(6), 1201-1214. http://doi.org/10.12989/sem.2015.53.6.1201.
  21. Kaur, H. and Lata, P. (2020), "Effect of thermal conductivity on isotropic modified couple stress thermoelastic medium with two temperatures", Steel Compos. Struct., 34(2), 309-319. https://doi.org/10.12989/scs.2020.34.2.309.
  22. Kaur, I., Lata, P. and Singh, K. (2020), "Memory-dependent derivative approach on magneto-thermoelastic transversely isotropic medium with two temperatures", Int. J. Mech. Mater. Eng., 15(1), 1-13. https://doi.org/10.1186/s40712-020-00122-2.
  23. Khamis, A.K., El-Bary, A.A., Lotfy, K. and Bakali, A. (2020), "Photothermal excitation processes with refined multi dual phase-lags theory for semiconductor elastic medium", Alex. Eng. J., 59(1), 1-9. https://doi.org/10.1016/j.aej.2019.11.016.
  24. Khan, A.A., Bukhari, S.R., Marin, M. and Ellahi, R. (2019), "Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index", Heat Transf. Res., 50(11), 1061-1080. https://doi.org/10.1615/HeatTransRes.2018028397.
  25. Kumar, R. and Devi, S. (2010), "Thermomechanical deformation in porous generalized thermoelastic body with variable material properties", Struct. Eng. Mech., 34(3), 285-300. https://doi.org/10.12989/sem.2010.34.3.285.
  26. Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4), 439-451. http://doi.org/10.12989/scs.2018.27.4.439.
  27. Lata, P. and Kaur, H. (2019), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., 19(5), 369. http://doi.org/10.12989/gae.2019.19.5.369.
  28. Lata, P. and Kaur, I. (2019), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without energy dissipation", Steel Compos. Struct., 32(6), 779-793. http://doi.org/10.12989/scs.2019.32.6.779.
  29. Lata, P. and Singh, S. (2020), "Time harmonic interactions in non local thermoelastic solid with two temperatures", Struct. Eng. Mech., 74(3), 341-350. http://doi.org/10.12989/sem.2020.74.3.341.
  30. Lata, P. and Singh, S. (2021), "Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer", Steel Compos. Struct., 38(2), 141. http://doi.org/10.12989/scs.2021.38.2.141.
  31. Lata, P. and Singh, S. (2020), "Plane wave propagation in a nonlocal magneto-thermoelastic solid with two temperature and Hall current", Wave. Random Complex Media, 1-27. https://doi.org/10.1080/17455030.2020.1838667.
  32. Lata, P. and Zakhmi, H. (2019), "Fractional order generalized thermoelastic study in orthotropic medium of type GN-III", Geomech. Eng., 19(4), 295-305. http://doi.org/10.12989/gae.2019.19.4.295.
  33. Lata, P. and Zakhmi, H. (2020), "Time harmonic interactions in an orthotropic media in the context of fractional order theory of thermoelasticity", Struct Eng Mech., 73(6), 725-735. https://doi.org/10.12989/sem.2020.73.6.725.
  34. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
  35. Lotfy, K., Hassan, W., El-Bary, A.A. and Kadry, M.A. (2020), "Response of electromagnetic and Thomson effect of semiconductor medium due to laser pulses and thermal memories during photothermal excitation", Result. Phys., 16, 102877. https://doi.org/10.1016/j.rinp.2019.102877.
  36. Mandelis, A., Nestoros, M. and Christofides, C. (1997), "Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures", Opt. Eng., 36(2), 459-468. https://doi.org/10.1117/1.601217.
  37. Marin, M. (1999), "An evolutionary equation in thermoelasticity of dipolar bodies", J. Math. Phys., 40(3), 1391-1399. https://doi.org/10.1063/1.532809.
  38. Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micropolar bodies", Aip Adv., 5(3), 037113. https://doi.org/10.1063/1.4914912.
  39. Mohamed, R., Abbas, I.A. and Abo-Dahab, S. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Commun. Nonlin. Sci. Numer. Simul., 14(4), 1385-1395. https://doi.org/10.1016/j.cnsns.2008.04.006.
  40. Othman, M.I. and Marin, M. (2017), "Effect of thermal loading due to laser pulse on thermoelastic porous medium under GN theory", Result. Phys., 7 3863-3872. https://doi.org/10.1016/j.rinp.2017.10.012.
  41. Song, Y., Todorovic, D.M., Cretin, B. and Vairac, P. (2010), "Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers", Int. J. Solid. Struct., 47(14-15), 1871-1875. https://doi.org/10.1016/j.ijsolstr.2010.03.020.
  42. Song, Y., Todorovic, D.M., Cretin, B., Vairac, P., Xu, J. and Bai, J. (2014), "Bending of semiconducting cantilevers under photothermal excitation", Int. J. Thermophys., 35(2), 305-319. https://doi.org/10.1007/s10765-014-1572-x.
  43. Stehfest, H. (1970), "Algorithm 368: Numerical inversion of Laplace transforms [D5]", Commun. ACM, 13(1), 47-49. https://doi.org/10.1145/361953.361969.
  44. Todorovic, D. (2003), "Photothermal and electronic elastic effects in microelectromechanical structures", Rev. Scientif. Instrument., 74(1), 578-581. https://doi.org/10.1063/1.1520324.
  45. Todorovic, D. (2003), "Plasma, thermal, and elastic waves in semiconductors", Rev. Scientif. Instrument., 74(1), 582-585. https://doi.org/10.1063/1.1523133.
  46. Todorovic, D. (2005), "Plasmaelastic and thermoelastic waves in semiconductors", J. Physique IV (Proceed.), 125, 551-555. https://doi.org/10.1051/jp4:2005125127.
  47. Yasein, M.D., Mabrouk, N., Lotfy, K. and EL-Bary, A. (2019), "The influence of variable thermal conductivity of semiconductor elastic medium during photothermal excitation subjected to thermal ramp type", Result. Phys., 15, 102766. https://doi.org/10.1016/j.rinp.2019.102766.
  48. Zenkour, A.M. and Abbas, I.A. (2014), "A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties", Int. J. Mech. Sci., 84, 54-60. https://doi.org/10.1016/j.ijmecsci.2014.03.016.