과제정보
This research was supported by Ajou University and by the Technology Innovation Program, No. 20014812, funded by the Ministry of Trade, Industry & Energy (MOTIE, Republic of Korea).
참고문헌
- Chen, S., Wan, H., Jiang, C., Ye, L., Yu, H., Yang, M., Zhang, C., Yang, G. and Wu, J. (2021), "Kinetostatic modeling of dual-drive H-Type gantry with exchangeable flexure joints", J. Mech. Robot., 13(4), 40908. https://doi.org/10.1115/1.4050830.
- Choi, K.B., Lee, J.J., Kim, G.H., Lim, H.J. and Kwon, S.G. (2018), "Amplification ratio analysis of a bridge-type mechanical amplification mechanism based on a fully compliant model", Mech. Mach. Theory, 121, 355-372. https://doi.org/10.1016/j.mechmachtheory.2017.11.002.
- Darnieder, M., Pabst, M., Wenig, R., Zentner, L., Theska, R. and Frohlich, T. (2018), "Static behavior of weighing cells", J. Sensor. Sensor Syst., 7(2), 587-600. https://doi.org/10.5194/jsss7-587-2018.
- Dearden, J., Grames, C., Jensen, B.D., Magleby, S.P. and Howell, L.L. (2017), "Inverted L-arm gripper compliant mechanism", J. Med. Dev., Trans. ASME, 11(3), 034502. https://doi.org/10.1115/1.4036336.
- Hong, M.B. and Jo, Y.H. (2012), "Design and evaluation of 2-DOF compliant forceps with force-sensing capability for minimally invasive robot surgery", IEEE Tran. Robot., 28(4), 932-941. https://doi.org/10.1109/TRO.2012.2194889.
- Iqbal, S. and Malik, A. (2019), "A review on MEMS based micro displacement amplification mechanisms", Sensor. Actuat., A: Phys., 300, 111666. https://doi.org/10.1016/j.sna.2019.111666.
- Kahr, M., Steiner, H., Hortschitz, W., Stifter, M., Kainz, A. and Keplinger, F. (2018), "3D-Printed MEMS magnetometer featuring compliant mechanism", Proceed., 2(13), 784. https://doi.org/10.3390/proceedings2130784.
- Kim, J.H., Kim, S.H. and Kwaka, Y.K. (2003), "Development of a piezoelectric actuator using a three-dimensional bridge-type hinge mechanism", Rev. Scientif. Instrum., 74(5), 2918-2924. https://doi.org/10.1063/1.1569411.
- Kim, K., Ahn, D. and Gweon, D. (2012), "Optimal design of a 1-rotational DOF flexure joint for a 3-DOF H-type stage", Mechatron., 22(1), 24-32. https://doi.org/10.1016/j.mechatronics.2011.10.002.
- Koseki, Y., Tanikawa, T., Arai, T. and Koyachi, N. (2002), "Kinematic analysis of translational 3-DOF micro parallel mechanism using matrix method", Adv. Robot., 16(3), 251-264. https://doi.org/10.1163/156855302760121927.
- Kumar, P., Ghyar, R. and Ravi, B. (2020), "Topology optimization of compliant mechanism for laparoscopic surgery instruments", ACM International Conference Proceeding Series, October.
- Lee, H.J., Kim, H.C., Kim, H.Y. and Gweon, D.G. (2013), "Optimal design and experiment of a three-axis out-of-plane nano positioning stage using a new compact bridge-type displacement amplifier", Rev. Scientif. Instrum., 84(11), 115103. https://doi.org/10.1063/1.4827087.
- Lee, H.J., Woo, S., Park, J., Jeong, J.H., Kim, M., Ryu, J., Gweon, D.G. and Choi, Y.M. (2018), "Compact compliant parallel XY nano-positioning stage with high dynamic performance, small crosstalk, and small yaw motion", Microsyst. Technol., 24(6), 2653-2662. https://doi.org/10.1007/s00542-017-3626-z.
- Li, H., Duan, X., Li, G., Oldham, K.R. and Wang, T.D. (2017), "An electrostatic MEMS translational scanner with large out-of-plane stroke for remote axial-scanning in multi-photon microscopy", Micromach., 8(5), 159. https://doi.org/10.3390/mi8050159.
- Lin, C., Shen, Z., Wu, Z. and Yu, J. (2018), "Kinematic characteristic analysis of a micro-/nano positioning stage based on bridge-type amplifier", Sensor. Actuator., A: Phys., 271, 230-242. https://doi.org/10.1016/J.SNA.2017.12.030.
- Ling, M., Cao, J. and Pehrson, N. (2019), "Kinetostatic and dynamic analyses of planar compliant mechanisms via a two-port dynamic stiffness model", Precis. Eng., 57, 149-161. https://doi.org/10.1016/j.precisioneng.2019.04.004.
- Ling, M., Cao, J., Howell, L.L. and Zeng, M. (2018a), "Kinetostatic modeling of complex compliant mechanisms with serial-parallel substructures: A semi-analytical matrix displacement method", Mech. Mach. Theory, 125, 169-184. https://doi.org/10.1016/j.mechmachtheory.2018.03.014.
- Ling, M., Cao, J., Jiang, Z. and Lin, J. (2017), "Modular kinematics and statics modeling for precision positioning stage", Mech. Mach. Theory, 107, 274-282. https://doi.org/10.1016/j.mechmachtheory.2016.10.009.
- Ling, M., Cao, J., Jiang, Z. and Lin, J. (2018b), "A semi-analytical modeling method for the static and dynamic analysis of complex compliant mechanism", Precis. Eng., 52, 64-72. https://doi.org/10.1016/10.1016/j.precisioneng.2017.11.008.
- Ling, M., Cao, J., Zeng, M., Lin, J. and Inman, D.J. (2016), "Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms", Smart Mater. Struct., 25(7), 075022. https://doi.org/10.1088/0964-1726/25/7/075022.
- Ling, M., Howell, L.L., Cao, J. and Chen, G. (2020), "Kinetostatic and dynamic modeling of flexure-based compliant mechanisms: A survey", Appl. Mech. Rev., 72(3), 030802. https://doi.org/10.1115/1.4045679.
- Ling, M., Howell, L.L., Cao, J. and Jiang, Z. (2018c), "A pseudo-static model for dynamic analysis on frequency domain of distributed compliant mechanisms", J. Mech. Robot., 10(5), 051011. https://doi.org/10.1115/1.4040700.
- Lobontiu, N. (2014), "Compliance-based matrix method for modeling the quasi-static response of planar serial flexure-hinge mechanisms", Precis. Eng., 38(3), 639-650. https://doi.org/10.1016/j.precisioneng.2014.02.014.
- Lobontiu, N. and Garcia, E. (2003), "Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms", Comput. Struct., 81(32), 2797-2810. https://doi.org/10.1016/j.compstruc.2003.07.003.
- Lobontiu, N. and Garcia, E. (2004), "Static response of planar compliant devices with small-deformation flexure hinges", Mech. Bas. Des. Struct. Mach., 32(4), 459-490. https://doi.org/10.1081/SME-200034157.
- Ma, H.W., Yao, S.M., Wang, L.Q. and Zhong, Z. (2006), "Analysis of the displacement amplification ratio of bridge-type flexure hinge", Sensor. Actuator., 132(2), 730-736. https://doi.org/10.1016/j.sna.2005.12.028.
- Marangoni, R.R., Rahneberg, I., Hilbrunner, F., Theska, R. and Frohlich, T. (2017), "Analysis of weighing cells based on the principle of electromagnetic force compensation", Measure. Sci. Technol., 28(7), 075101. https://doi.org/10.1088/1361-6501/aa6bcd.
- Meng, Q., Li, Y. and Xu, J. (2014), "A novel analytical model for flexure-based proportion compliant mechanisms", Precis. Eng., 38(3), 449-457. https://doi.org/10.1016/j.precisioneng.2013.12.001.
- Milojevic, A., Lins, S. and Handroos, H. (2021), "Soft robotic compliant two-finger gripper mechanism for adaptive and gentle food handling", IEEE 4th International Conference on Soft Robotics, April.
- Pham, H.H. and Chen, I.M. (2005), "Stiffness modeling of flexure parallel mechanism", Precis. Eng., 29(4), 467-478. https://doi.org/10.1016/j.precisioneng.2004.12.006.
- Pohlmann, P., Peukert, C., Merx, M., Muller, J. and Ihlenfeldt, S. (2020), "Compliant joints for the improvement of the dynamic behaviour of a gantry stage with direct drives", J. Mach. Eng., 20(3), 17-29. https://doi.org/10.36897/jme/127103.
- Qin, Y., Shirinzadeh, B., Tian, Y., Zhang, D. and Bhagat, U. (2014), "Design and computational optimization of a decoupled 2-DOF monolithic mechanism", IEEE/ASME Trans. Mechatron., 19(3), 872-881. https://doi.org/10.1109/TMECH.2013.2262801.
- Ryu, J.W., Gweon, D.G. and Moont, K.S. (1997), "Optimal design of a flexure hinge based XY0 wafer stage", Precis. Eng., 21(1), 18-28. http://doi.org/10.1016/s0141-6359(97)00064-0.
- Sun, Y., Zhang, D., Liu, Y. and Lueth, T.C. (2020), "FEM-based mechanics modeling of bio-inspired compliant mechanisms for medical applications", IEEE Trans. Med. Robot. Bionic., 2(3), 364-373. http://doi.org/10.1101/2020.06.15.151670.
- Tang, H. and Li, Y. (2012), "Optimal design of the lever displacement amplifiers for a flexure-based dual-mode motion stage", IEEE/ASME International Conference on Advanced Intelligent Mechatronics, July.
- Tang, H. and Li, Y. (2014), "Development and active disturbance rejection control of a compliant micro-/nanopositioning piezostage with dual mode", IEEE Trans. Indus. Electron., 61(3), 1475-1492. http://doi.org/10.1109/TIE.2013.2258305.
- Tian, Y., Lu, K., Wang, F., Zhou, C., Ma, Y., Jing, X., Yang, C. and Zhang, D. (2020), "A spatial deployable three-DOF compliant nano-positioner with a three-stage motion amplification mechanism", IEEE/ASME Trans. Mechatron., 25(3), 1322-1334. http://doi.org/10.1109/TMECH.2020.2973175.
- Tian, Y., Shirinzadeh, B. and Zhang, D. (2010), "Design and dynamics of a 3-DOF flexure-based parallel mechanism for micro/nano manipulation", Microelectron. Eng., 87(2), 230-241. https://doi.org/10.1016/j.mee.2009.08.001.
- Wang, F., Zhao, X., Huo, Z., Shi, B., Liang, C., Tian, Y. and Zhang, D. (2021), "A 2-DOF nano-positioning scanner with novel compound decoupling-guiding mechanism", Mech. Mach. Theory, 155, 104066. http://doi.org/10.1016/j.mechmachtheory.2020.104066.
- Xu, Q. and Li, Y. (2011), "Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier", Mech. Mach. Theory, 46(2), 183-200. https://doi.org/10.1016/j.mechmachtheory.2010.09.007.
- Yang, J., Kim, J., Kim, D. and Yun, D. (2021), "Shock resistive flexure-based anthropomorphic hand with enhanced payload", Soft Robot., 9(2), 266-279. https://doi.org/10.1089/soro.2020.0067.