DOI QR코드

DOI QR Code

Strength and microstructure of composites with cement matrixes modified by fly ash and active seeds of C-S-H phase

  • Golewski, Grzegorz Ludwik (Faculty of Civil Engineering and Architecture, Lublin University of Technology) ;
  • Szostak, Bartosz (Faculty of Civil Engineering and Architecture, Lublin University of Technology)
  • 투고 : 2021.10.02
  • 심사 : 2022.02.18
  • 발행 : 2022.05.25

초록

Fly ash (FA) is the main additive to concretes currently produced. This substitute of ordinary Portland cement (OPC) have a positive effect on the structure and mechanical parameters of mature concrete. Unfortunately, the problem of using FA as the OPC replacement is that it significantly reduces the performance of concretes in the early stages of their curing. This limits the possibility of using this type of concrete, e.g., in the prefabrication, where it is required to obtain high strength composites after short periods of their curing. In order to minimize these negative effects, research has been undertaken to increase the early strength of the concretes with FA through the application of a specially dedicated chemical nanoadmixture (NA) in the form of seeds of the C-S-H phase. Therefore, this paper presents results of tests of modified concretes both with the addition of FA and with NA. The analyses were carried out based on the results of the macroscopic and microstructural tests in 5 time periods, i.e. after: 4, 8, 12, 24 and 72 hours. The greatest increase in mechanical strength parameters and rapid development of the basic matrix phases in composites in the first 12 hours of composites curing was observed.

키워드

과제정보

This work was financially supported by Ministry of Science and Higher Education within the statutory research number FD-22/IL-4/017.

참고문헌

  1. Abolhasani, A., Nazarpour, H. and Dehestani, M. (2021), "Effects of silicate impurities on fracture behavior and microstructure of calcium aluminate cement concrete", Eng. Fract. Mech., 242, 107446. https://doi.org/10.1016/j.engfracmech.2020.107446.
  2. Ahmadi, A., Reza Kianoush, M., Moslemi, M., Lachemi, M., Siad, H. and Booya, E. (2021), "Investigation on repair of tension cracks in reinforced concrete panels", Eng. Struct., 245, 112974. https://doi.org/10.1016/j.engstruct.2021.112974.
  3. Alghazali, H.H., Aljazaeri, Z.R. and Myers, J.J. (2020), "Effect of accelerated curing regimes on high volume fly ash mixtures in precast manufacturing plants", Cement Concrete Res., 131, 105913. https://doi.org/10.1016/j.cemconres.2019.105913.
  4. Antonovic, V., Pundiene, I., Stpnys, R., Cesniene, J. and Kariene, J. (2010), "A review of the possible applications of nanotechnology in refractory concrete", J. Civil Eng. Manage., 16, 595-602. https://doi.org/10.3846/jcem.2010.66.
  5. Barnat-Hunek, D., Grzegorczyk-Franczak, M., Klimek, B., Pavlikova, M. and Pavlik, Z. (2021), "Properties of multi-layer renders with fly ash and boiler slag admixtures for salt-laden masonry", Constr. Build. Mater., 278, 122366. https://doi.org/10.1016/j.conbuildmat.2021.122366.
  6. Beddu, S., Ahmad, M., Mohamad, D., bin Noruul Ameen, M.I., Itam, Z., Mohd Kamal, N.L. and Nadiah Barsi, N.A. (2020), "Utilization of fly ash cenosphere to study mechanical and therm properties of lightweight concrete", AIMS Mater. Sci., 7(6), 911-925. https://doi.org/10.3934/matersci.2020.6.911
  7. Belviso, C. (2018), "State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues", Prog. Energy Combus. Sci., 65, 109-135. https://doi.org/10.1016/j.pecs.2017.10.004.
  8. Berto, F., Ayatollahi M. and Marsavina, L. (2017), "Mixed mode fracture", Theor. Appl. Fract. Mech., 91, 1. https://doi.org/10.1016/j.tafmec.2017.05.012
  9. Bicer, A. (2021), "The effect of fly ash and pine tree resin on thermo-mechanical properties of concretes with expanded clay aggregates", Case Stud. Constr. Mater., 15, e00624. https://doi.org/10.1016/j.cscm.2021.e00624.
  10. Biricik, H. and Sarier, N. (2014), "Comparative study of the characteristics of nanosilica-, silica fume- and fly ash-incorporated cement mortars", Mater. Res., 17, 570-582. http://doi.org/10.1590/S1516-14392014005000054.
  11. Boudjellal, K., Bouabaz, M. and Belachia, M. (2016), "Mechanical characterization of a self-compacting polymer concrete called isobeton", Struct. Eng. Mech., 57(2), 357-367. https://doi.org/10.12989/sem.2016.57.2.357.
  12. Chajec, A. (2021), "Granite powder vs. fly ash for the sustainable production of air-cured cementitious mortars", Mater., 14, 1208. https://doi.org/10.3390/ma14051208.
  13. Chen, M., Li, L., Zheng, Y., Zhao, P., Lu, L. and Cheng, X. (2017), "Rheological and mechanical properties of admixtures modified 3D printing sulphoaluminate cementitious materials", Constr. Build. Mater., 189, 601-611. https://doi.org/10.1016/j.conbuildmat.2018.09.037.
  14. Chen, Y.G., Guan, L.L., Zhu, A.Y. and Chen, W.J. (2021), "Foamed concrete containing fly ash: Properties and application to backfilling", Constr. Build. Mater., 273, 121685. https://doi.org/10.1016/j.conbuildmat.2020.121685.
  15. Chinnu, S.N., Minnu, S.N., Bahurudeen, A. and Senthilkumar, R. (2021), "Recycling of industrial and agricultural wastes as alternative coarse aggregates: A step towards cleaner production of concrete", Constr. Build. Mater., 287, 123056. https://doi.org/10.1016/j.conbuildmat.2021.123056.
  16. Congro, M., Roehl, D. and Mejia, C. (2021), "Mesoscale computational modeling of the mechanical behawior of cement composite materials", Compos. Struct., 257, 113137. https://doi.org/10.1016/j.compstruct.2020.113137.
  17. Craciun, E.M. (2008), "Energy criteria for crack propagation in prestresses elastic composites", Sol. Mech, Appl., 154, 193-237. https://doi.org/10.1007/978-1-4020-8772-1_7.
  18. Craciun, E.M. (2016), "Prestressed orthotropic material containing and elliptical hole", Adv. Struct. Mater., 60, 327-336. https://doi.org/10.1007/978-981-10-0959-4_18.
  19. Craciun, E.M. and Soos, E. (2006), "Anti-plane states in an anisotropic elastic body containing an elliptical hole", Math. Mech. Solid., 11(5), 459-466. https://doi.org/10.1177/1081286505044138.
  20. Deng, S., Shu, Y., Li, S., Tian, G., Huang, J. and Zhang, F. (2016), "Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention", J. Hazard. Mater., 301, 400-406. https://doi.org/10.1016/j.jhazmat.2015.09.032.
  21. Dragas, J., Tosic, N., Ignatovic, S. and Marinkovic, S. (2016), "Mechanical and time-dependent properties of high-volume fly ash concrete for structural use", Mag. Concrete Res., 68, 632-645. https://doi.org/10.1680/jmacr.15.00384.
  22. Fakoor, M. and Ghoreishi, S.M.N. (2019), "Verification of a micro-mechanical approach for the investigation of progressive damage in composite laminates", Acta. Mech., 230(1), 225-241. https://doi.org/10.1007/s00707-018-2313-1.
  23. Fakoor, M. and Manafi Farid, H. (2019), "Mixed-mode I/II fracture criterion for crack initiation assessment of composite materials", Acta Mechanica, 230 (1), 281-301. https://doi.org/10.1007/s00707-018-2308-y.
  24. Fakoor, M. and Shahsavar S. (2021), "The effect of T-stress on mixed mode I/II fracture of composite materials: Reinforcement isotropic solid model in combination with maximum shear stress theory", Int. J. Solid. Struct., 229, 111145. https://doi.org/10.1016/j.ijsolstr.2021.111145.
  25. Fakoor, M. and Shokrollahi, M.S. (2018), "A new micro-mechanical approach for investigation damage zone effects on mixed mode I/II fracture orthotropic materials", Acta Mechanica, 229(8), 3537-3556. https://doi.org/10.1007/s00707-018-2132-4
  26. Fakoor, M., Rafiee, R. and Zare, S. (2019), "Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials", Steel. Compos. Struct., 30(1), 1-12. https://doi.org/10.12989/scs.2019.30.1.001.
  27. Fakoor, M., Sabour, M.H. and Khansari, N.M. (2014), "A new approach for investigation of damage zone properties orthotropic materials", Eng. Solid Mech., 992(4), 283-292.
  28. Farooq, F., Czarnecki, S., Niewiadomski, P., Aslam, F., Alabuduljabbar, H., Ostrowski, K.A., Sliwa-Wieczorek, K., Nowobilski, T. and Malazdrewicz S. (2021), "Study for the prediction of the compressive strength of self-compacting concrete modified with fly ash", Mater., 14, 4934. https://doi.org/10.3390/ma14174934
  29. Figala, P., Drochytka, R., Cerny, V. and Kolisko, J. (2018), "Structure of polymer-cement composite optimized with secondary raw materials", Mater. Struct. Tech., 1, 26-31. https://doi.org/10.31448/mstj.01.01.2018.26-31.
  30. Gil, D.M. and Golewski, G.L. (2018a), "Effect of silica fume and siliceous fly ash addition on the fracture toughness of plain concrete in mode I", IOP Conf. Ser. Mater. Sci. Eng., 416, 012065. https://doi.org/10.1088/1757-899X/416/1/012065
  31. Gil, D.M. and Golewski, G.L. (2018b), "Potential of siliceous fly ash and silica fume as a substitute of binder in cementitious concretes", E3S Web Conf., 49, 00030. https://doi.org/10.1051/e3sconf/20184900030.
  32. Golewski, G. and Sadowski, T. (2006), "Fracture toughness at shear (mode II) of concretes made of natural and broken aggregates", Brittle Matrix Compos., 8, 537-546. https://doi.org/10.1533/9780857093080.537.
  33. Golewski, G. L. (2017a), "Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading", Struct. Eng. Mech., 62(1), 1-9. https://doi.org/10.12989/sem.2017.62.1.001.
  34. Golewski, G.L. (2015), "Studies of natural radioactivity of concrete with siliceous fly ash addition", Cement Wapno Beton, 2, 106-114.
  35. Golewski, G.L. (2017b), "Effect of fly ash addition on the fracture toughness of plain concrete at third model of fracture", J. Civil Eng. Manage, 23(5), 613-620. https://doi.org/10.3846/13923730.2016.1217923.
  36. Golewski, G.L. (2017c), "Generalized fracture toughness and compressive strength of sustainable concrete including low calcium fly ash. Characterization of fly ash microstructure", Mater., 10, 1393. https://doi.org/10.3390/ma10121393.
  37. Golewski, G.L. (2017d), "Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure", Mater. Charact., 134, 335-346. https://doi.org/10.1016/j.matchar.2017.11.008.
  38. Golewski, G.L. (2018a), "An analysis of fracture toughness in concrete with fly ash addition, considering all models of cracking", IOP Conf. Ser. Mater. Sci. Eng., 416, 012029. https://doi.org/10.1088/1757-899X/416/1/012029
  39. Golewski, G.L. (2018b), "An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives", Compos. Struct., 200, 515-520. https://doi.org/10.1016/j.compstruct.2018.05.144.
  40. Golewski, G.L. (2018c), "Effect of curing time on the fracture toughness of fly ash concrete composites", Compos. Struct., 185, 105-112. https://doi.org/10.1016/j.compstruct.2017.10.090.
  41. Golewski, G.L. (2018d), "Green concrete composite incorporating fly ash with high strength and fracture toughness", J. Clean. Prod., 172, 218-226. https://doi.org/10.1016/j.jclepro.2017.10.065.
  42. Golewski, G.L. (2018e), "Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concrete containing fly ash (FA)", J. Hazard. Mater., 357, 298-304. https://doi.org/10.1016/j.jhazmat.2018.06.016.
  43. Golewski, G.L. (2019a), "A new principles for implementation and operation of foundations for machines: A review of recent advances", Struct. Eng. Mech., 71(3), 317-327. https://doi.org/10.12989/sem.2019.71.3.317.
  44. Golewski, G.L. (2019b), "A novel specific requirements for materials used in reinforced concrete composites subjected to dynamic loads", Compos. Struct., 223, 110939. https://doi.org/10.1016/j.compstruct.2019.110939.
  45. Golewski, G.L. (2019c), "Estimation of the optimum content of fly ash in concrete composite based on the analysis of fracture toughness tests using various measuring systems", Constr. Build. Mater., 213, 142-155. https://doi.org/10.1016/j.conbuildmat.2019.04.071.
  46. Golewski, G.L. (2019d), "Measurement of fracture mechanics parameters of concrete containing fly ash thanks to use of Digital Image Correlation (DIC) method", Measure., 135, 96-105. https://doi.org/10.1016/j.measurement.2018.11.032.
  47. Golewski, G.L. (2019e), "Physical characteristics of concrete, essential in design of fracture-resistant, dynamically loaded reinforced concrete structures", Mater. Des. Proc. Commun., 1(5), e82. https://doi.org/10.1002/mdp2.82.
  48. Golewski, G.L. (2019f), "The influence of microcrack width on the mechanical parameters in concrete with the addition of fly ash: Consideration of technological and ecological benefits", Constr. Build. Mater., 197, 849-861. https://doi.org/10.1016/j.conbuildmat.2018.08.157.
  49. Golewski, G.L. (2020a), "Changes in the fracture toughness under mode II loading of low calcium fly ash (LCFA) concrete depending on ages", Mater., 13, 5241. https://doi.org/10.3390/ma13225241.
  50. Golewski, G.L. (2020b), "Energy savings associated with the use of fly ash and nanoadditives in the cement composition", Energ., 13, 2184. https://doi.org/10.3390/en13092184.
  51. Golewski, G.L. (2020c), "On the special construction and materials conditions reducing the negative impact of vibrations on concrete structures", Mater. Today Procs., 45, 4344-4348. https://doi.org/10.1016/j.matpr.2021.01.031.
  52. Golewski, G.L. (2021a), "Green concrete based on quaternary binders with significant reduced of CO2 emissions", Energ., 14, 4558. https://doi.org/10.3390/en14154558.
  53. Golewski, G.L. (2021b), "Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack path lengths with the use of a new crack tip tracking method", Measure., 181, 109632. https://doi.org/10.1016/j.measurement.2021.109632.
  54. Golewski, G.L. (2021c), "The beneficial effect of the addition of fly ash on reduction of the size of microcracks in the ITZ of concrete composites under dynamic loading", Energ., 14, 668. https://doi.org/10.3390/en14030668.
  55. Golewski, G.L. (2021d), "Validation of the favorable quantity of fly ash in concrete and analysis of crack propagation and its length-Using the crack tip tracking (CTT) method-In the fracture toughness examinations under Mode II, through digital image correlation", Constr. Build. Mater., 296, 122362. https://doi.org/10.1016/j.conbuildmat.2021.122362.
  56. Golewski, G.L. (2022), "The specificity of shaping and execution of monolithic pocket foundations (PF) in hall buildings", Build., 12, 192. https://doi.org/10.3390/buildings12020192.
  57. Golewski, G.L. and Gil, D.M. (2021), "Studies of fracture toughness in concretes containing fly ash and silica fume in the first 28 days of curing", Mater., 14, 319. https://doi.org/10.3390/ma14020319.
  58. Golewski, G.L. and Sadowski, T. (2012), "Experimental investigation and numerical modeling fracture processes under Mode II in concrete composites containing fly-ash additive at early age", Solid Stat. Phenom.,188, 158-163. https://doi.org/10.4028/www.scientific.net/SSP.188.158.
  59. Golewski, G.L. and Szostak, B. (2021a), "Strengthening the very early-age structure of cementitious composites with coal fly ash via incorporating a novel nanoadmixture based on C-S-H phase activators", Constr. Build. Mater., 312, 125426. https://doi.org/10.1016/j.conbuildmat.2021.125426.
  60. Golewski, G.L. and Szostak, B. (2021b), "Application of the C-S-H phase nucleating agents to improve the performance of sustainable concrete composites containing fly ash for use in the precast concrete industry", Mater., 14, 6514. https://doi.org/10.3390/ma14216514.
  61. Gosselin, C. Duballet, R., Roux, Ph., Gaudilliere, N., Dirrenberger, J. and Morel, Ph. (2016), "Large-scale 3D printing of ultra-high performance concrete-A new processing route for architects and builders", Mater. Des., 100, 102-109. https://doi.org/10.1016/j.matdes.2016.03.097.
  62. Ha, T.M., Ura, S., Fukada, S. and Torii, K. (2019), "Development and application of a highly durable precast prestressed concrete slab deck using fly ash concrete", Struct. Infrastr. Eng., 16(9), 1228-1246. https://doi.org/10.1080/15732479.2019.1696377.
  63. Haeri, H. (2015), "Experimental crack analyses of concrete-like CSCBD specimens using a higher order DDM", Comput. Concrete, 16(6), 881-896. https://doi.org/10.12989/cac.2015.16.6.881.
  64. Haeri, H. and Sarfarazi V. (2016), "Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)", Comput. Concrete, 18(1), 039-051. https://doi.org/10.12989/cac.2016.18.1.039.
  65. Haeri, H., Sarfarazi, V., Zhu, Z., Nohekhan Hokmabadi, N., Moshrefifar, M.R. and Hedayat, A. (2019), "Shear behawior of non-persistent joints in concreto and gypsum specimens using combined experimental and numerical approaches", Struct. Eng. Mech., 69(2), 221-230. https://doi.org/10.12989/sem.2019.69.2.221.
  66. Hebhoub, H., Belachia, M., Berdoudi, S. and Kherraf, L. (2018), "Incorporation of marble waste as sand in formulation of self-compacting concrete", Struct. Eng. Mech., 67(1), 87-91. https://doi.org/10.12989/sem.2018.67.1.087.
  67. Hemalatha, T. and Sasmal, S. (2019), "Early-age strength development in fly ash blended cement composites: investigation through chemical activation", Mag. Concrete Res., 71(5), 260-270. https://doi.org/10.1680/jmacr.17.00336.
  68. Hwang, S.D., Khatib, R., Lee, H.K., Lee, S.H. and Khayat, K.H. (2012), "Optimization of steam-curing regime for high- strength self-consolidating concrete for precast, prestressed concrete applications", PCJ J., 57(3), 48-62.
  69. Ikponmwosa, E.E., Ehikhuenmen, S.O. and Irene, K.K. (2019), "Comparative study and empirical mobelling of pulverized coconut shell, periwinkle shell and palm kernel shell as a pozzolans in concrete", Acta Polytech., 59(6), 560-572. https://doi.org/10.14311/ap.2019.59.0560
  70. Ji, G., Peng, X., Wang, S., Hu, C., Ran, P., Sun, K. and Zeng, L. (2021), "Influence of magnesium slag as a mineral admixture on the performance of concrete", Constr. Build. Mater., 295, 123619. https://doi.org/10.1016/j.conbuildmat.2021.123619.
  71. Ju, M., Park, K., Lee, K., Yong Ahn, K. and Sim, J. (2019), "Assessment of reliability-based FRP reinforcement ratio for concrete structures with recycled coarse aggregate", Struct. Eng. Mech., 69(4), 399-405. https://doi.org/10.12989/sem.2019.69.4.399.
  72. Kaur, I. and Singh, K. (2021a), "Fractional order strain analysis in thick circular plate subjected to hyperbolic two temperature", Part. Different. Eqs. Appl. Math., 4, 100130. https://doi.org/10.1016/j.padiff.2021.100130.
  73. Kaur, I. and Singh, K. (2021b), "Plane wave in non-local semiconducting rotating media with hall effect and three-phase lag fractional order heat transfer", Int. J. Mech. Mater. Eng., 16(1), 14. https://doi.org/10.1186/s40712-021-00137-3.
  74. Kaur, I., Lata, P. and Singh, K. (2020), "Effect of memory dependent derivative isotropic thermoelastic cantilever nano-beam with two temperature", Appl. Math. Model., 88, 83-105. https://doi.org/10.1016/j.apm.2020.06.045.
  75. Keihani, R., Bahadori-Jahromi, A. and Goodchild, C. (2019), "The significance of removing shear walls in existing low-rise RC frame buildings-sustainable approach", Struct. Eng. Mech., 71(5), 563-576. https://doi.org/10.12989/sem.2019.71.5.563.
  76. Khaji, Z. and Fakoor, M. (2021), "Strain energy release rate in combination with reinforcement isotropic solid model (SERIS): A new mixed-mode I/II criterion to investigate fracture behavior of orthotropic materials", Theor. Appl. Fract. Mech., 113, 102962. https://doi.org/10.1016/j.tafmec.2021.102962.
  77. Khansari, N.M., Fakoor, M. and Berto, F. (2019), "Probabilistic micromechanical damage model for mixed mode I/II fracture investigation of composite materials", Theor. Appl. Fract. Mech., 99, 177-193. https://doi.org/10.1016/j.tafmec.2018.12.003.
  78. Kosior-Kazberuk, M. and Lelusz, M. (2007), "Strength development of concrete with fly ash addition", J. Civil Eng. Manage., 13(2), 115-122. https://doi.org/10.3846/13923730.2007.9636427
  79. Lata, P. and Kaur, I. (2019a), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. https://doi.org/10.12989/sem.2019.70.2.245.
  80. Lata, P. and Kaur, I. (2019b), "Thermomechanical interactions in transversely isotropic magneto thermoelastic solid with two temperatures and without Energy dissipation", Steel Compos. Struct., 32(6), 779-793. https://doi.org/10.12989/scs.2019.32.6.779.
  81. Lata, P., Kaur, I. and Singh, K. (2020), "Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer", Steel Compos. Struct., 35(3), 343-351. https://doi.org/10.12989/scs.2020.35.3.343.
  82. Li, M., Wang, Q. and Yang, Y. (2017), "Influence of steam curing method on the performance of concrete containing a large portion of mineral admixtures", Adv. Mater. Sci. Eng., 2017, 9863219. https://doi.org/10.1155/2017/9863219.
  83. Liang, J.F., Zhang, L.F., Yang, Y.H. and Wei, L. (2021), "Flexural behavior of partially prefabricated partially encased composite beams", Steel. Compos. Struct., 38(6), 705-716. https://doi.org/10.12989/scs.2021.38.6.705.
  84. Liu, G., Bai, E., Xu, J., Wang, T. and Chang, S. (2019), "Research status and development prospects of 3D printing concrete materials", IOP Conf. Ser. Earth Environ. Sci., 267, 032014. https://doi.org/10.1088/1755-1315/267/3/032014
  85. Marin, M., Craciun, E.M. and Pop, N. (2020), "Some results in green-lindsay thermoelasticity of bodies with dipolar structure", Math., 8(4), 497. https://doi.org/10.3390/math8040497.
  86. Marsavina, L., Berto, F., Negru, R., Serban, D.A. and Linul, E. (2017), "An engineering approach to predict mixed mode fracture of PUR foams based on ASED and micromechanical modelling", Theor. Appl. Fract. Mech., 91, 148-154. https://doi.org/10.1016/j.tafmec.2017.06.008.
  87. Mehdizadeh, M., Maghshenas, A., Khosnari, M.M. (2021), "On the effect of internal friction on torsional and axial cyclic loading", Int. J. Fatigue, 145, 106113. https://doi.org/10.1016/j.ijfatigue.2020.106113.
  88. Min, T.B., Cho, I.S., Park, W.J., Choi, H.K. and Lee, H.S. (2014), "Experimental study on the development of compressive strength of early concrete age using calcium-based hardening accelerator and high early strength cement", Constr. Build. Mater., 64, 208-214. https://doi.org/10.1016/j.conbuildmat.2014.04.053.
  89. Miraldo, S., Lopes, S., Pacheco-Torgal, F. and Lopes, A. (2021), "Advantages and shortcomings of the utilization of recycled wastes as aggregates in structural concretes", Constr. Build. Mater., 298, 123729. https://doi.org/10.1016/j.conbuildmat.2021.123729.
  90. Mousavi, S.R., Afshoon, I., Bayatpour, M.A., Davarpanah, A. and Mahmoud Miri, T.Q. (2021), "Effect of waste glass and curing aging on fracture toughness of self-compacting mortars using ENDB specimen", Constr. Build. Mater., 282, 122711. https://doi.org/10.1016/j.conbuildmat.2021.122711.
  91. Owens K., Russell, M.I., Donnelly, G., Kirk, A. and Basheer, P.A.M. (2014), "Use of nanocrystals seedeing chemical admixture in improving Portland cement strength development: Application for precast concrete industry", Adv. Appl. Ceram., 113(8), 478-484. https://doi.org/10.1179/1743676114Y.0000000176.
  92. Pacheco-Torgal, F. (2017), "High tech startup creation for Energy efficient built environment", Renew. Sustain. Energy Rev., 71, 618-629. https://doi.org/10.1016/j.rser.2016.12.088.
  93. Papadakis, V.G. (1999), "Effect of fly ash of Portland cement systems. Part I. Low-calcium fly ash", Cement Concrete Res., 29, 1727-1736. https://doi.org/10.1016/S0008-8846(99)00153-2.
  94. Park, S., Beak, J., Kim, K. and Park, Y.J. (2021), "Study on reduction effect of vibration propagation due to internal explosion using composite materials", Int. J. Concrete Struct. Mater., 15, 30. https://doi.org/10.1186/s40069-021-00467-8.
  95. Rafiee, R., Fakoor, M. and Hesamsadat, H. (2015), "The influence of production inconsistencies on the functional failure of GRP pipes", Steel. Compos. Struct., 19(6), 1369-1379. https://doi.org/10.12989/scs.2015.19.6.1369.
  96. Raheel, M., Rahman, F. and Ali, Q. (2020), "A stoichiometric approach to find optimum amount of fly ash needed in cement concrete", SN Appl. Sci., 2, 1100. https://doi.org/10.1007/s42452-020-2913-y.
  97. Rahimireskati, S., Ghabraie, K., Garcez, E.O. and Al-Ameri, R. (2021), "Improving sorptivity and electrical resistivity of concrete utilizing biomedical polymeric waste sourced from dialysis treatment", Int. J. Sus. Eng., 14(3), 1-15. https://doi.org/10.1080/19397038.2021.1941393.
  98. Rahmani, E., Sharbatdar, M.K. and Beygi, M.H.A. (2021), "Influence of cement contents on the fracture parameters of Roller compacted concrete pavement (RCCP)", Constr. Build. Mater., 289, 123159. https://doi.org/10.1016/j.conbuildmat.2021.123159.
  99. Ramezanianpour, A.A., Khazali, M.H. and Vosoughi P. (2013), "Effect of steam curing cycles on strength and durability of SCC: A case study in precast concrete", Constr. Build. Mater., 49, 807-813. https://doi.org/10.1016/j.conbuildmat.2013.08.040.
  100. Sarfarazi, V. and Haeri, H. (2016), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370.
  101. Shahsavar, S., Fakoor, M. and Berto, F. (2020), "Verification of reinforcement isotropic solid model in conjunction with maximum shear stress criterion to anticipate mixed mode I/II fracture of composite materials", Acta Mechanica, 231(12), 5105-5124. https://doi.org/10.1007/s00707-020-02810-8.
  102. Siddique, R. (2003), "Effect of fine aggregate replacement with Class F fly ash on the mechanical properties of concrete", Cement Concrete Res., 33, 539-547. https://doi.org/10.1016/S0008-8846(02)01000-1.
  103. Singh, A., Das, S. and Craciun, E.M. (2019), "Effect of thermomechanical loading on an edge crack of finite length in an infinite orthotropic strip", Mech. Compos. Mater., 55(3), 285-296. https://doi.org/10.1007/s11029-019-09812-1.
  104. Singh, A., Das, S., Altenbah, H. and Craciun, E.-M. (2020), "Semi-infinite moving crack in an orthotropic strip sandwiched between two identical half planes", ZAMM, 100(2), e201900202. https://doi.org/10.1002/zamm.201900202.
  105. Smirnova, O. (2020), "Low-clinker cements with low water demand", J. Mater. Civil Eng., 32(7), 06020008. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003241.
  106. Smirnova, O., Kazanskaya, L., Koplik, J., Tan, H. and Gu, X. (2021a), "Concrete based on clinker-free cement: Selecting the functional unit for environmental assessment", Sustain., 13, 135. https://doi.org/10.3390/su13010135.
  107. Smirnova, O., Menendez Pidal de Navascues, I., Mikhailevskii, V.R., Kolosov, O.I. and Skolota, N.S. (2021b), "Sound-absorbing composites with rubber crumb from used tires", Appl. Sci., 11, 7347. https://doi.org/10.3390/app11167347.
  108. Souza, M.T., Ferreira, I.M., Guzi de Moraes, E., Senff, L. and Novaes de Oliveira, A.P. (2020), "3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects", J. Build. Eng., 32, 101833. https://doi.org/10.1016/j.jobe.2020.101833.
  109. Szczesniak, A., Zychowicz, J. and Stolarski, A. (2020), "Influence of fly ash additive on the properties of concrete with slag cement", Mater., 13, 3265. https://doi.org/10.3390/ma13153265.
  110. Szostak, B. and Golewski, G.L. (2018), "Effect of nano admixture of CSH on selected strength parameters of concrete including fly ash", IOP Conf. Ser. Mater. Sci. Eng., 416, 012105. https://doi.org/10.1088/1757-899X/416/1/012105
  111. Szostak, B. and Golewski, G.L. (2020), "Improvement of strength parameters of cement matrix with the addition of siliceous of fly ash by using nanometric C-S-H seeds", Energ., 13, 6734. https://doi.org/10.3390/en13246734.
  112. Szostak, B. and Golewski, G.L. (2021), "Rheology of cement pastes with siliceous of fly ash and the C-S-H nano-admixture", Mater., 14, 3640. https://doi.org/10.3390/ma14133640.
  113. Tee, K.F. and Mostofizadeh, S. (2021), "Numerical and experimental investigation of concrete with various dosage of fly ash", AIMS Mater. Sci., 8(4), 587-607. https://doi.org/10.3934/matersci.2021036
  114. Telesca, A., Marroccoli, M., Calabrese, D., Valenti, G.L. and Montagnaro, F. (2013), "Flue gas desulfurization gypsum and coal fly ash as basic components of prefabricated building materials", Waste Manage., 33, 628-633. https://doi.org/10.1016/j.wasman.2012.10.022.
  115. Toniolo, N., Bednarzig, V., Roether, J.A., Rost, H. and Boccaccini, A.R. (2019), "Advancing processing technologies for designed geopolymers: 3D printing and mechanical machining", Interceram-Int. Ceram. Rev., 68(1-2), 18-21. https://doi.org/10.1007/s42411-018-0059-3.
  116. Ullah, S., Raheel, M., Khan, R. and Tariq Khan, M. (2021), "Characterization of physical & mechanical properties of asphalt concrete containing low-& high-density polyethylene waste as aggregates", Constr. Build. Mater., 301, 124127. https://doi.org/10.1016/j.conbuildmat.2021.124127.
  117. Van der Putten, J., Deprez, M., Cnudde, V., de Schutter, G. and van Tittleboom, K. (2019), "Microstructural characterization of 3D printed cementitious materials", Mater., 12, 18. https://doi.org/10.3390/ma12182993.
  118. Wei, Y., Chai, J., Qin, Y., Li, Y., Xu, Z., Li, Y. and Ma, Y. (2021), "Effect of fly ash on mechanical properties and microstructure of cellulose fiber-reinforced concrete under sulfate dry-wet cycle attack", Constr. Build. Mater., 302, 124207. https://doi.org/10.1016/j.conbuildmat.2021.124207.
  119. Wyrzykowski, M., Assmann, A., Hesse, C. and Laura, P. (2020), "Microstructure development and autogenous shrinkage of mortars with C-S-H seeding and internal curing", Cement Concrete Res., 129, 105967. https://doi.org/10.1016/j.cemconres.2019.105967.
  120. Yang, J.M. and Kim, J.K. (2019), "Development and application of a hybrid prestressed segmental concrete grider utilizing low carbon materials", Struct. Eng. Mech., 69(4), 371-381. https://doi.org/10.12989/sem.2019.69.4.371.
  121. Yazici, H., Aydin, S., Yigiter, H. and Baradan, B. (2005), "Effect of fly ash and silica fume on compressive and fracture behaviors of concrete", Cement Concrete Res., 35, 1122-1127. https://doi.org/10.1016/S0008-8846(97)00269-X.
  122. Zhang, B., Zhu, H. and Liu, F. (2021a), "Fracture properties of slag-based alkali-activated seawater coral aggregate concrete", Theor. Appl. Fract. Mech., 115, 103071. https://doi.org/10.1016/j.tafmec.2021.103071.
  123. Zhang, D., Ge, Y., Dai Pang, S. and Liu, P. (2021b), "The effect of fly ash content on flexural performance and fiber failure mechanism of lightweight deflection-hardening cementitious composites", Constr. Build. Mater., 302, 124349. https://doi.org/10.1016/j.conbuildmat.2021.124349.
  124. Zhang, P. and Li, Q. (2013), "Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume", Compos. Part B: Eng., 45, 1587-1594. https://doi.org/10.1016/j.compositesb.2012.10.006.
  125. Zhang, P., Han, S., Golewski, G.L. and Wang, X. (2020), "Nnoparticle-reinforced building materials with applications in civil engineering", Adv. Mech. Eng., 12, 1-4. https://doi.org/10.1177/1687814020965438.
  126. Zhang, P., Ji-Xiang, G., Xiao-Bing, D., Tian-Hang, Z. and Juan, W. (2016), "Fracture behavior o fly ash concrete containing silica fume", Struct. Eng. Mech., 59(2), 261-275. https://doi.org/10.12989/sem.2016.59.2.261.
  127. Zhang, P., Sha, D., Li, Q., Zhao, S. and Ling, Y. (2021c), "Effect of nano silica particles on impact resistance and durability concrete containing coal fly ash", Nanomater., 11(5), 1296. https://doi.org/10.3390/nano11051296.
  128. Zhang, P., Sha, D., Li, Q., Zhao, S. and Ling, Y. (2021d), "Statistical analysis of three-point-bending fracture failure of mortar", Constr. Build. Mater., 300, 123883. https://doi.org/10.1016/j.conbuildmat.2021.123883.
  129. Zheng, S., Qi, L., He, R., Wu, J. and Wang, Z. (2021), "Erosion damage and expansion evolution of interfacial transition zone concrete under dry-wet cycles and sulfate erosion", Constr. Build. Mater., 307, 124954. https://doi.org/10.1016/j.conbuildmat.2021.124954.
  130. Zou, F., Hu, F., Wang, Y., Rua, Y. and Hu, S. (2020b), "Enhancement of early-age strength of the high content fly ash blended cement paste by sodium sulfate and C-S-H seeds towards a grrner binder", J. Clean. Prod., 244, 118566. https://doi.org/10.1016/j.jclepro.2019.118566.
  131. Zou, F., Shen, K. Hu, C., Wang, F., Yang, L. and Hu, S. (2020a), "Effect of sodium sulfate and C-S-H seeds on the reaction of fly ash with different amorphous alumina contents", ACS Sustain. Chem. Eng., 8, 1659-1670. https://doi.org/10.1021/acssuschemeng.9b06779.