Acknowledgement
This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under research project no. 2019/01/10886
References
- AlSaleh, R.J. and Fuggini, C. (2020), "Combining GPS and accelerometers' records to capture torsional response of cylindrical tower", Smart Struct. Syst., 25(1), 111. http://doi.org/10.12989/sss.2020.25.1.111.
- Anselmet, F., Gagne, Y., Hopfinger, E. and Antonia, R. (1984), "High-order velocity structure functions in turbulent shear flows", J. Fluid Mech., 140, 63-89. https://doi.org/10.1017/S0022112084000513.
- Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart Struct. Syst., 18, 787-800. http://doi.org/10.12989/sss.2016.18.4.787.
- Arefi, M. and Zenkour, A.M. (2017), "Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor", Smart Struct. Syst., 19, 33-38. DOI: https://doi.org/10.12989/sss.2017.19.1.033.
- Baroud, C.N., Plapp, B.B., Swinney, H.L. and She, Z.S. (2003), "Scaling in three-dimensional and quasi-two-dimensional rotating turbulent flows", Phys. Fluid., 15(8), 2091-2104. https://doi.org/10.1063/1.1577120.
- Bec, J., Biferale, L., Lanotte, A., Scagliarini, A. and Toschi, F. (2009), "Turbulent pair dispersion of inertial particles", J. Fluid Mech., 645, 497-528. https://doi.org/10.1017/S0022112009992783.
- Benzi, R., Biferale, L., Fisher, R., Lamb, D. and Toschi, F. (2010), "Inertial range Eulerian and Lagrangian statistics from numerical simulations of isotropic turbulence", J. Fluid Mech., 653, 221-244. https://doi.org/10.1017/S002211201000056X.
- Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. and Succi, S. (1993), "Extended self-similarity in turbulent flows", Phys. Rev. E, 48(1), R29. https://doi.org/10.1103/PhysRevE.48.R29.
- Benzi, R., Paladin, G., Parisi, G. and Vulpiani, A. (1984), "On the multifractal nature of fully developed turbulence and chaotic systems", J. Phys. A: Math. General, 17(18), 3521. https://doi.org/10.1088/0305-4470/17/18/021
- Berera, A. and Ho, R.D. (2018), "Chaotic properties of a turbulent isotropic fluid", Phys. Rev. Lett., 120(2), 024101. https://doi.org/10.1103/PhysRevLett.120.024101.
- Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
- Chavarria, G.R., Baudet, C. and Ciliberto, S. (1995), "Hierarchy of the energy dissipation moments in fully developed turbulence", Phys. Rev. Lett., 74(11), 1986. https://doi.org/10.1103/PhysRevLett.74.1986.
- Dubrulle, B. (1994), "Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance", Phys. Rev. Lett., 73(7), 959. https://doi.org/10.1103/PhysRevLett.73.959.
- Fisher, R.T., Kadanoff, L.P., Lamb, D.Q., Dubey, A., Plewa, T., Calder, A., ... & Needham, S.G (2008), "Terascale turbulence computation using the FLASH3 application framework on the IBM Blue Gene/L system", IBM J. Res. Develop., 52(1-2), 127-136. https://doi.org/10.1147/rd.521.0127.
- Friedrich, J. (2020), "Probability density functions in homogeneous and isotropic magneto-hydrodynamic turbulence", Atmosphere, 11(4), 382. https://doi.org/10.3390/atmos11040382.
- Frisch, U. and Kolmogorov, A.N. (1995), Turbulence: The Legacy of AN Kolmogorov, Cambridge University Press.
- Frisch, U., Sulem, P.L. and Nelkin, M. (1978), "A simple dynamical model of intermittent fully developed turbulence", J. Fluid Mech., 87(4), 719-736. https://doi.org/10.1017/S0022112078001846.
- Fukayama, D., Oyamada, T., Nakano, T., Gotoh, T. and Yamamoto, K. (2000), "Longitudinal structure functions in decaying and forced turbulence", J. Phys. Soc. JPN, 69(3), 701-715. https://doi.org/10.1143/JPSJ.69.701.
- Grossmann, S., Lohse, D. and Reeh, A. (1997), "Different intermittency for longitudinal and transversal turbulent fluctuations", Phys. Fluid., 9(12), 3817-3825. https://doi.org/10.1063/1.869516.
- Harris, V., Graham, J. and Corrsin, S. (1977), "Further experiments in nearly homogeneous turbulent shear flow", J. Fluid Mech., 81(4), 657-687. https://doi.org/10.1017/S0022112077002286.
- Iyer, K.P., Sreenivasan, K.R. and Yeung, P. (2017), "Reynolds number scaling of velocity increments in isotropic turbulence", Phys. Rev. E, 95(2), 021101. https://doi.org/10.1103/PhysRevE.95.021101.
- Iyer, K.P., Sreenivasan, K.R. and Yeung, P. (2020), "Scaling exponents saturate in three-dimensional isotropic turbulence", Phys. Rev. Fluid., 5(5), 054605. https://doi.org/10.1103/PhysRevFluids.5.054605.
- Jiang, X.Q., Gong, H., Liu, J.K., Zhou, M.D. and She, Z.S. (2006), "Hierarchical structures in a turbulent free shear flow", J. Fluid Mech., 569, 259. https://doi.org/10.1017/S0022112006002801.
- Kang, H.S., Chester, S. and Meneveau, C. (2003), "Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation", J. Fluid Mech., 480, 129-160. https://doi.org/10.1017/S0022112002003579.
- Kolmogorov, A.N. (1962), "A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number", J. Fluid Mech., 13(1), 82-85. https://doi.org/10.1017/S0022112062000518.
- Krommer, M., Vetyukova, Y. and Staudigl, E. (2016), "Nonlinear modelling and analysis of thin piezoelectric plates: buckling and post-buckling behavior", Smart Struct. Syst., 18(1), 155-181. https://doi.org/10.12989/sss.2016.18.1.155.
- Lee, S.Y., Huynh, T.C., Dang, N.L. and Kim, J.T. (2019), "Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations", Smart Struct. Syst., 24(4), 525-539. https://doi.org/10.12989/sss.2019.24.4.525.
- Liu, J., She, Z.S., Guo, H., Li, L. and Ouyang, Q. (2004), "Hierarchical structure description of spatiotemporal chaos", Phys. Rev. E, 70(3), 036215. https://doi.org/10.1103/PhysRevE.70.036215.
- Liu, L. and She, Z.S. (2003), "Hierarchical structure description of intermittent structures of turbulence", Fluid Dyn. Res., 33(3), 261. https://doi.org/10.1016/S0169-5983(03)00071-6
- Liu, T. (2017), "An analytical solution for probability density function of stretching rate in homogeneous isotropic turbulence", Eur. J. Mech.-B/Fluid., 62, 42-50. https://doi.org/10.1016/j.euromechflu.2016.11.010.
- McComb, W.D. (2014), Homogeneous, Isotropic Turbulence: Phenomenology, Renormalization and Statistical Closures, Vol. 162, OUP Oxford.
- Poff, N.L. and Zimmerman, J.K. (2010), "Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows", Freshwater Biol., 55(1), 194-205. https://doi.org/10.1111/j.1365-2427.2009.02272.x.
- Poplawski, B., Mikulowski, G., Pisarski, D., Wiszowaty, R. and Jankowski, L. (2019), "Optimum actuator placement for damping of vibrations using the Prestress-Accumulation Release control approach", Smart Struct. Syst., 24(1), 27-35. DOI: 10.12989/sss.2019.24.1.027.
- Praskovsky, A.A., Gledzer, E.B., Karyakin, M.Y. and Zhou,Y. (1993), "The sweeping decorrelation hypothesis and energy-inertial scale interaction in high Reynolds number flows", J. Fluid Mech., 248, 493-511. https://doi.org/10.1017/S0022112093000862.
- Saw, E.W., Debue, P., Kuzzay, D., Daviaud, F. and Dubrulle, B. (2017), "On the universality of anomalous scaling exponents of structure functions in turbulent flows", J. Fluid Mech., 837, 657-669. https://doi.org/10.1017/jfm.2017.848.
- She, Z.S. and Leveque, E. (1994), "Universal scaling laws in fully developed turbulence", Phys. Rev. Lett., 72(3), 336. https://doi.org/10.1103/PhysRevLett.72.336.
- She, Z.S. and Zhang, Z.X. (2009), "Universal hierarchical symmetry for turbulence and general multi-scale fluctuation systems", Acta Mechanica Sinica, 25(3), 279-294. https://doi.org/10.1007/s10409-009-0257-3.
- She, Z.S., Ren, K., Lewis, G.S. and Swinney, H.L. (2001), "Scalings and structures in turbulent Couette-Taylor flow", Phys. Rev. E, 64(1), 016308. https://doi.org/10.1103/PhysRevE.64.016308.
- Shen, X. and Warhaft, Z. (2002), "Longitudinal and transverse structure functions in sheared and unsheared wind-tunnel turbulence", Phys. Fluid., 14(1), 370-381. https://doi.org/10.1063/1.1421059.
- Shih, L.H., Koseff, J.R., Ivey, G.N. and Ferziger, J.H. (2005), "Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations", J. Fluid Mech., 525, 193. https://doi.org/10.1017/S0022112004002587.
- Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527.
- Tong, C. (2001), "Measurements of conserved scalar filtered density function in a turbulent jet", Phys. Fluid., 13(10), 2923-2937. https://doi.org/10.1063/1.1402171.
- Wang, L. (2010), "On properties of fluid turbulence along streamlines", J. Fluid Mech., 648, 183. https://doi.org/10.1017/S0022112009993041.
- Yeh, J.Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233.
- Zahrai, S.M. and Kakouei, S. (2019), "Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles", Smart Struct. Syst., 24(3), 391-401. https://doi.org/10.12989/sss.2019.24.3.391.