DOI QR코드

DOI QR Code

Nonlinear structural model updating based on the Deep Belief Network

  • Mo, Ye (Department of Civil Engineering, Hefei University of Technology) ;
  • Wang, Zuo-Cai (Department of Civil Engineering, Hefei University of Technology) ;
  • Chen, Genda (Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology) ;
  • Ding, Ya-Jie (Department of Civil Engineering, Hefei University of Technology) ;
  • Ge, Bi (Department of Civil Engineering, Hefei University of Technology)
  • Received : 2020.08.21
  • Accepted : 2022.03.15
  • Published : 2022.05.25

Abstract

In this paper, a nonlinear structural model updating methodology based on the Deep Belief Network (DBN) is proposed. Firstly, the instantaneous parameters of the vibration responses are obtained by the discrete analytical mode decomposition (DAMD) method and the Hilbert transform (HT). The instantaneous parameters are regarded as the independent variables, and the nonlinear model parameters are considered as the dependent variables. Then the DBN is utilized for approximating the nonlinear mapping relationship between them. At last, the instantaneous parameters of the measured vibration responses are fed into the well-trained DBN. Owing to the strong learning and generalization abilities of the DBN, the updated nonlinear model parameters can be directly estimated. Two nonlinear shear-type structure models under two types of excitation and various noise levels are adopted as numerical simulations to validate the effectiveness of the proposed approach. The nonlinear properties of the structure model are simulated via the hysteretic parameters of a Bouc-Wen model and a Giuffré-Menegotto-Pinto model, respectively. Besides, the proposed approach is verified by a three-story shear-type frame with a piezoelectric friction damper (PFD). Simulated and experimental results suggest that the nonlinear model updating approach has high computational efficiency and precision.

Keywords

Acknowledgement

This study was partly supported by the National Natural Science Foundation of China under grand No. 51922036, by the key research and development project of Anhui province under grand No. 1804a0802204, by The Fundamental Research Funds for the Central Universities under grand No. JZ2020HGPB0117, and by the Natural Science Funds for Distinguished Young Scholar of Anhui province under grand No.1708085J06. The results and opinions presented in this paper are those of the authors only and they do not necessarily represent those of the sponsors.

References

  1. Altunisik, A.C. and Bayraktar, A. (2017), "Manual model updating of highway bridges under operational condition", Smart Struct. Syst., 19(1), 39-46. https://doi.org/10.12989/sss.2017.19.1.039.
  2. Asadollahi, P., Huang, Y. and Li, J. (2018), "Bayesian finite element model updating and assessment of cable-stayed bridges using wireless sensor data", Sensor., 18(9), 3057. https://doi.org/10.3390/s18093057.
  3. Asgarieh, E., Moaveni, B. and Stavridis, A. (2014), "Nonlinear finite element model updating of an infilled frame based on identified time-varying modal parameters during an earthquake", J. Sound Vib., 333(23), 6057-6073. https://doi.org/https://doi.org/10.1016/j.jsv.2014.04.064.
  4. Astroza, R., Nguyen, L.T. and Nestorovic, T. (2016), "Finite element model updating using simulated annealing hybridized with unscented Kalman filter", Comput. Struct., 177, 176-191. https://doi.org/10.1016/j.compstruc.2016.09.001.
  5. Brownjohn, J.M.W., Moyo, P., Omenzetter, P. and Lu, Y. (2003), "Assessment of highway bridge upgrading by dynamic testing and finite-element model updating", J. Bridge Eng., 8(3), 162-172. https://doi.org/10.1061/(asce)1084-0702(2003)8:3(162).
  6. Chang, C.C., Chang, T.Y.P. and Xu, Y.G. (2000), "Adaptive neural networks for model updating of structures", Smart Mater. Struct., 9(1), 59-68. https://doi.org/10.1088/0964-1726/9/1/306.
  7. Chen, C. and Chen, G. (2010), "Shake table tests of a quarter-scale three-storey building model with piezoelectric friction dampers", Struct. Control Hlth. Monit., 11(4), 239-257. https://doi.org/10.1002/stc.41.
  8. Chen, G. and Chen, C. (2004), "Semiactive control of the 20-story benchmark building with piezoelectric friction dampers", J. Eng. Mech., 130(4), 393-400. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(393).
  9. Chih-Chieh, H. and Chin-Hsiung, L. (2001), "Nonlinear identification of dynamic systems using neural networks", Comput.-Aid. Civil Infrastr. Eng., 16(1), 28-41. https://doi.org/10.1111/0885-9507.00211.
  10. El-Borgi, S., Choura, S., Ventura, C., Baccouch, M. and Cherif, F. (2005), "Modal identification and model updating of a reinforced concrete bridge", Smart Struct. Syst., 1(1), 83-101. https://doi.org/10.12989/sss.2005.1.1.083.
  11. Feldman, M. (1997), "Non-linear free vibration identification via the Hilbert transform", J. Sound Vib., 208(3), 475-489. https://doi.org/10.1006/jsvi.1997.1182.
  12. Fischer, A. and Igel, C. (2014), "Training restricted Boltzmann machines: An introduction", Pattern Recog., 47(1), 25-39. https://doi.org/10.1016/j.patcog.2013.05.025.
  13. Hasancebi, O. and Dumlupinar, T. (2013), "Linear and nonlinear model updating of reinforced concrete T-beam bridges using artificial neural networks", Comput. Struct., 119, 1-11. https://doi.org/10.1016/j.compstruc.2012.12.017.
  14. Hemez, F.M. and Doebling, S.W. (2001), "Review and assessment of model updating for non-linear transient dynamics", Mech. Syst. Signal Pr., 15, 45. https://doi.org/10.1006/mssp.2000.1351.
  15. Hinton, G.E. (2012), Neural Networks: Tricks of the Trade: Second Edition, Springer Berlin Heidelberg, Heidelberg, Berlin.
  16. Hinton, G.E. and Salakhutdinov, R.R. (2006), "Reducing the dimensionality of data with neural networks", Sci., 313(5786), 504-507. https://doi.org/10.1126/science.1127647.
  17. Hoa, T.N., Khatir, S., De Roeck, G., Long, N.N., Thanh, B.T. and Wahab, M.A. (2020), "An efficient approach for model updating of a large-scale cable-stayed bridge using ambient vibration measurements combined with a hybrid metaheuristic search algorithm", Smart Struct. Syst., 25(4), 487-499. https://doi.org/10.12989/sss.2020.25.4.487.
  18. Hofmeister, B., Bruns, M. and Rolfes, R. (2019), "Finite element model updating using deterministic optimisation: A global pattern search approach", Eng. Struct., 195, 373-381. https://doi.org/10.1016/j.engstruct.2019.05.047.
  19. Huang, Y., Zhang, H., Li, H. and Wu, S. (2021), "Recovering compressed images for automatic crack segmentation using generative models", Mech. Syst. Signal Pr., 146, 107061. https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107061.
  20. Le Roux, N. and Bengio, Y. (2010), "Deep belief networks are compact universal approximators", Neur. Comput., 22(8), 2192-2207. https://doi.org/10.1162/neco.2010.08-09-1081.
  21. Lei, Y., Wang, H.F. and Shen, W.A. (2012), "Update the finite element model of Canton Tower based on direct matrix updating with incomplete modal data", Smart Struct. Syst., 10(4-5), 471-483. https://doi.org/10.12989/sss.2012.10.4_5.471.
  22. Li, S., Zhao, X. and Zhou, G. (2019), "Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network", Comput.-Aid. Civil Infrastr. Eng., 34(7), 616-634. https://doi.org/https://doi.org/10.1111/mice.12433.
  23. Lu, Y. and Tu, Z.G. (2004), "A two-level neural network approach for dynamic FE model updating including damping", J. Sound Vib., 275(3-5), 931-952. https://doi.org/10.1016/s0022-460x(03)00796-x.
  24. Mckenna, F. (2011), "OpenSees: A framework for earthquake engineering simulation", Comput. Sci. Eng., 13(4), 58-66. https://doi.org/10.1109/mcse.2011.66.
  25. Mohamed, A.R., Dahl, G.E. and Hinton, G. (2012), "Acoustic modeling using deep belief networks", IEEE Trans. Audio Speech Language Pr., 20(1), 14-22. https://doi.org/10.1109/tasl.2011.2109382.
  26. Mordini, A., Savov, K. and Wenzel, H. (2007), "The finite element model updating: a powerful tool for structural health monitoring", Struct. Eng. Int., 17(4), 352-358. https://doi.org/10.2749/101686607782359010.
  27. Naranjo-Perez, J., Jimenez-Alonso, J.F., Pavic, A. and Saez, A. (2020), "Finite-element-model updating of civil engineering structures using a hybrid UKF-HS algorithm", Struct. Infrastr. Eng., 1-18. https://doi.org/10.1080/15732479.2020.1760317.
  28. Naseralavi, S.S., Shojaee, S. and Ahmadi, M. (2016), "Modified gradient methods hybridized with Tikhonov regularization for damage identification of spatial structure", Smart Struct. Syst., 18(5), 839-864. https://doi.org/10.12989/sss.2016.18.5.839.
  29. Ni, P.H. and Ye, X.W. (2019), "Nonlinear finite element model updating with a decentralized approach", Smart Struct. Syst., 24(6), 683-692. https://doi.org/10.12989/sss.2019.24.6.683.
  30. Park, Y.S., Kim, S., Kim, N. and Lee, J.J. (2017), "Finite element model updating considering boundary conditions using neural networks", Eng. Struct., 150, 511-519. https://doi.org/10.1016/j.engstruct.2017.07.032.
  31. Pirmoradi, S., Teshnehlab, M., Zarghami, N. and Sharifi, A. (2020), "The self-organizing restricted boltzmann machine for deep representation with the application on classification problems", Exp. Syst. Appl., 149, 113286. https://doi.org/10.1016/j.eswa.2020.113286.
  32. Qiao, J., Wang, G., Li, X. and Li, W. (2018), "A self-organizing deep belief network for nonlinear system modeling", Appl. Soft Comput., 65, 170-183. https://doi.org/https://doi.org/10.1016/j.asoc.2018.01.019.
  33. Wang, Z.C., Xin, Y. and Ren, W.X. (2015), "Nonlinear structural model updating based on instantaneous frequencies and amplitudes of the decomposed dynamic responses", Eng. Struct., 100, 189-200. https://doi.org/10.1016/j.engstruct.2015.06.002.
  34. Wang, Z.C., Xin, Y., Xing, J.F. and Ren, W.X. (2017), "Hilbert low-pass filter of non-stationary time sequence using analytical mode decomposition", J. Vib. Control, 23(15), 2444-2469. https://doi.org/10.1177/1077546315617408.
  35. Weng, S., Xia, Y., Xu, Y.L. and Zhu, H.P. (2011), "Substructure based approach to finite element model updating", Comput. Struct., 89(9-10), 772-782. https://doi.org/10.1016/j.compstruc.2011.02.004.
  36. Xu, W., Peng, H., Zeng, X., Zhou, F., Tian, X. and Peng, X. (2019), "Deep belief network-based AR model for nonlinear time series forecasting", Appl. Soft Comput., 77, 605-621. https://doi.org/https://doi.org/10.1016/j.asoc.2019.02.006.
  37. Yuen, K.V. and Kuok, S.C. (2011), "Bayesian methods for updating dynamic models", Appl. Mech. Rev., 64(1), 1-18. https://doi.org/10.1115/1.4004479.
  38. Yun, C.B. and Bahng, E.Y. (2000), "Substructural identification using neural networks", Comput. Struct., 77(1), 41-52. https://doi.org/10.1016/s0045-7949(99)00199-6.
  39. Zapico, J.L., Gonzalez-Buelga, A., Gonzalez, M.P. and Alonso, R. (2008), "Finite element model updating of a small steel frame using neural networks", Smart Mater. Struct., 17(4), 045016. https://doi.org/10.1088/0964-1726/17/4/045016.
  40. Zhang, J., Wan, C.F. and Sato, T. (2013), "Advanced Markov Chain Monte Carlo approach for finite element calibration under uncertainty", Comput.-Aid. Civil Infrastr. Eng., 28(7), 522-530. https://doi.org/10.1111/j.1467-8667.2012.00802.x.
  41. Zhou, Y., Pei, Y., Li, Z., Fang, L., Zhao, Y. and Yi, W. (2020), "Vehicle weight identification system for spatiotemporal load distribution on bridges based on non-contact machine vision technology and deep learning algorithms", Measure., 159, 107801. https://doi.org/https://doi.org/10.1016/j.measurement.2020.107801.